Deakin University
Browse

File(s) under permanent embargo

Oxytocin and vasopressin inhibit hyper-aggressive behaviour in socially isolated mice

journal contribution
posted on 2019-09-15, 00:00 authored by Oliver Tan, Hande Musullulu, Joel S Raymond, Bianca Wilson, Mia Langguth, Michael T Bowen
Despite the high prevalence of aggression across a wide range of disorders, there is a severe lack of pharmacological treatments. Recent rodent studies have shown both centrally and peripherally administered oxytocin is effective in reducing territorial aggression, an adaptive form of aggression not reflective of pathological hyper-aggression. The current study tested i.p. administered oxytocin and vasopressin in a model of non-territorial hyper-aggression and examined the involvement of oxytocin receptors (OXTR) and vasopressin V1a receptors (V1aR). Male Swiss mice (N = 160) were either socially isolated or group housed for 6 weeks prior to the commencement of testing; wherein two unfamiliar weight and condition matched mice were placed into a neutral context for 10 min. Socially isolated mice exhibited heightened aggression that was powerfully and dose-dependently inhibited by oxytocin and vasopressin and that was accompanied by dose-dependent increases in close social contact (huddling) and grooming. These anti-aggressive effects of oxytocin were blocked by pre-treatment with a higher dose of selective V1aR antagonist SR49059 (20 mg/kg i.p.), but not a lower dose of SR49059 (5 mg/kg i.p.) or selective OXTR antagonist L-368,899 (10 mg/kg i.p.). This is consistent with a growing number of studies linking a range of effects of exogenous oxytocin to actions at the V1a receptor. Interestingly, the highest dose of the OXTR agonist TGOT (10 mg/kg) also reduced isolation-induced aggression. These results suggest that while activation of the V1a receptor appears critical for the anti-aggressive effects of oxytocin, activation of the oxytocin receptor cannot be excluded.

History

Journal

Neuropharmacology

Volume

156

Article number

107573

Pagination

1-12

Location

Amsterdam, The Netherlands

ISSN

0028-3908

Language

eng

Publication classification

C1.1 Refereed article in a scholarly journal

Copyright notice

2019, Published by Elsevier Ltd

Publisher

Elsevier