File(s) under permanent embargo
PGC-1α and exercise: important partners in combating insulin resistance
Diabetes and obesity are characterised by an impairment in mitochondrial function resulting in a decrease in glucose and fatty acid oxidation, respiration and an increase in intramuscular triglycerides (IMTG's) and insulin resistance. Peroxisome proliferator-activated receptor (PPAR)-ggr coactivator 1agr (PGC-1agr) is a nuclear transcriptional coactivator which regulates several important metabolic processes including, mitochondrial biogenesis, adaptive thermogenesis, respiration, insulin secretion and gluconeogenesis. In addition, PGC-1agr has been shown to increase the percentage of oxidative type I muscle fibres, with the latter responsible for the majority of insulin stimulated glucose uptake. PGC-1agr also co-activates PPAR's agr, bgr/dgr and ggr which are important transcription factors of genes regulating lipid and glucose metabolism. Exercise causes mitochondrial biogenesis, improves skeletal muscle fatty acid oxidation capacity and insulin sensitivity, therefore making it an important intervention for the treatment of insulin resistance. The expression of PGC-1agr mRNA is reduced in diabetic subjects, however, it is rapidly induced in response to interventions which signal alterations in metabolic requirements, such as exercise. Because of the important role of PGC-1agr in the control of energy metabolism and insulin sensitivity, it is seen as a candidate factor in the etiology of type 2 diabetes and a drug target for its therapeutic treatment.
History
Journal
Current diabetes reviewsVolume
1Issue
2Pagination
175 - 181Publisher
Bentham Science Publishers LtdLocation
Bussum, NetherlandsPublisher DOI
ISSN
1573-3998Language
engPublication classification
C1.1 Refereed article in a scholarly journalCopyright notice
2005, Bentham Science Publishers LtdUsage metrics
Read the peer-reviewed publication
Categories
Keywords
diabetesskeletal musclePPARmitochondriaobesityScience & TechnologyLife Sciences & BiomedicineEndocrinology & MetabolismRECEPTOR-GAMMA COACTIVATOR-1HUMAN SKELETAL-MUSCLECONTROLLING MITOCHONDRIAL BIOGENESISMESSENGER-RNA EXPRESSIONTRANSCRIPTIONAL COACTIVATORPPAR-GAMMAGLUCOSE-UPTAKEOXIDATIVE-PHOSPHORYLATIONPHYSICAL-ACTIVITYGENE-EXPRESSION