Deakin University
Browse

File(s) under permanent embargo

Peak modeling approach to accurate assignment of first-dimension retention times in comprehensive two-dimensional chromatography

journal contribution
posted on 2009-07-23, 00:00 authored by Jacqui AdcockJacqui Adcock, M Adams, B Mitrevski, P Marriott
Modeling of first-dimension retention of peaks based on modulation phase and period allows reliable prediction of the modulated peak distributions generated in the comprehensive two-dimensional chromatography experiment. By application of the inverse process, it is also possible to use the profile of the modulated peaks (their heights or areas) to predict the shape and parameters of the original input chromatographic band (retention time, standard deviation, area) for the primary column dimension. This allows an accurate derivation of the firstdimension retention time (RSD 0.02%) which is equal to that for the non-modulated experiment, rather than relying upon the retention time of the major modulated peak generated by the modulation process (RSD 0.16%). The latter metric can produce a retention time that differs by at least the modulation period employed in the experiment, which displays a discontinuity in the retention time vs modulation phase plot at the point of the 180° out-ofphase modulation. In contrast, the new procedure proposed here gives a result that is essentially independent of modulation phase and period. This permits an accurate value to be assigned to the first-dimension retention. The proposed metric accounts for the time on the seconddimension, the phase of the distribution, and the holdup time that the sampled solute is retained in the modulating interface. The approach may also be based on the largest three modulated peaks, rather than all modulated peaks. This simplifies the task of assigning the retention time with little loss of precision in band standard deviation or retention time, provided that these peaks are not all overloaded in the first or second dimension.

History

Journal

Analytical chemistry

Volume

81

Issue

16

Pagination

6797 - 6804

Publisher

American Chemical Society

Location

Washington, D.C.

ISSN

0003-2700

eISSN

1520-6882

Language

eng

Publication classification

C1.1 Refereed article in a scholarly journal

Copyright notice

2009, American Chemical Society

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC