Field and laboratory investigations were conducted to characterize the composition of petroleum hydrocarbons in oily sludge and the underlying contaminated soils in a decommissioned oilfield waste pit in Kuwait. The results show that the petroleum hydrocarbon composition in the oily sludge and contaminated soils was spatially variable. Highly toxic petroleum hydrocarbon species such as BTEX and PAHs were generally lacking, and both sludge-and soil-borne hydrocarbons were dominated by long-chain petroleum hydrocarbons. The soil contamination depth was generally very shallow although localized deep profiles (>0.5 m) were found. A loose relationship was established between TPH in the sludge and that in the underlying soil. On average, the soil had a greater percentage of shorter-chain hydrocarbon fractions (either aliphatics or aromatics), as compared to the sludge. The environmental risk from the oily sludge and contaminated soils is considered to be relatively low. For cost-effective management of the environmental risk of decommissioning an oilfield waste pit, containment of the sludge and contaminated soils using a soil-capping approach may be sufficient to minimize the possible adverse environmental impacts from the decommissioned waste pit, and this may represent an option that is superior to other costly remediation strategies.