This paper studies the polytope of the minimum-span graph labelling problems with integer distance constraints (DC-MSGL). We first introduce a few classes of new valid inequalities for the DC-MSGL defined on general graphs and briefly discuss the separation problems of some of these inequalities. These are the initial steps of a branch-and-cut algorithm for solving the DC-MSGL. Following that, we present our polyhedral results on the dimension of the DC-MSGL polytope, and that some of the inequalities are facet defining, under reasonable conditions, for the polytope of the DC-MSGL on triangular graphs.
History
Journal
International transactions in operational research