This paper presents a computational approach for predicting the Australian stock market index - AORD using multi-layer feed-forward neural networks from the time series data of AORD and various interrelated markets. This effort aims to discover an effective neural network or a set of adaptive neural networks for this prediction purpose, which can exploit or model various dynamical swings and inter-market influences discovered from professional technical analysis and quantitative analysis. Within a limited range defined by our empirical knowledge, three aspects of effectiveness on data selection are considered: effective inputs from the target market (AORD) itself, a sufficient set of interrelated markets, and effective inputs from the interrelated markets. Two traditional dimensions of the neural network architecture are also considered: the optimal number of hidden layers, and the optimal number of hidden neurons for each hidden layer. Three important results were obtained: A 6-day cycle was discovered in the Australian stock market during the studied period; the time signature used as additional inputs provides useful information; and a basic neural network using six daily returns of AORD and one daily returns of SP500 plus the day of the week as inputs exhibits up to 80% directional prediction correctness. stock market prediction, financial time series, neural networks, feature selection, correlation, variance reduction, overtraining.
History
Journal
Journal of research and practice in information technology