Predicting chronic kidney disease progression using small pathology datasets and explainable machine learning models
Version 2 2024-09-17, 02:36Version 2 2024-09-17, 02:36
Version 1 2024-09-16, 00:52Version 1 2024-09-16, 00:52
journal contribution
posted on 2024-09-17, 02:36 authored by Sandeep Reddy, Supriya Roy, Kay Weng Choy, Sourav Sharma, Karen M Dwyer, Chaitanya Manapragada, Zane Miller, Joy Cheon, Bahareh NakisaBahareh NakisaPredicting chronic kidney disease progression using small pathology datasets and explainable machine learning models
History
Journal
Computer Methods and Programs in Biomedicine UpdateVolume
6Article number
100160Pagination
1-11Location
Amsterdam, The NetherlandsPublisher DOI
Open access
- Yes
ISSN
2666-9900eISSN
2666-9900Language
enPublication classification
C1 Refereed article in a scholarly journalPublisher
ElsevierPublication URL
Usage metrics
Keywords
Kidney DiseaseMachine Learning and Artificial IntelligenceNetworking and Information Technology R&D (NITRD)Renal and urogenital4.1 Discovery and preclinical testing of markers and technologiesChronic kidney disease predictionExplainable machine learningTransfer learningShapley additive exPlanationsCounterfactual analysis
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC