Prediction of Drug Dissolution Profiles Using Artificial Neural Networks
journal contribution
posted on 2001-01-01, 00:00authored byS Quek, Chee Peng Lim, K Peh
This paper investigates the efficacy and reliability of Artificial Neural Networks (ANNs) as an intelligent decision support tool for pharmaceutical product formulation. Two case studies have been employed to evaluate capabilities of the Multilayer Perceptron network in predicting drug dissolution/release profiles. Performances of the network were evaluated using similarity factor (&fnof[sub 2]) — an index recommended by the United States Food and Drug Administration for profile comparison in pharmaceutical research. In addition, the bootstrap method was applied to assess the network prediction reliability by estimating confidence intervals associated with the results. The Multilayer Perceptron network also demonstrated a superior performance in comparison with multiple regression models. The results reveal that the ANN system has potentials to be a decision support tool for profile prediction in pharmaceutical experimentation, and the bootstrap method could be used as a means to assess reliability of the network prediction. [ABSTRACT FROM AUTHOR].
History
Journal
International journal of computational intelligence and applications