forsyth-protonconductingmembrane-2018.pdf (2.44 MB)
Download fileProton conducting membranes based on poly(Ionic liquids) having phosphonium counter-cations
journal contribution
posted on 2018-02-01, 00:00 authored by Mehmet Isik, Luca Porcarelli, Nerea Lago, Haijin Zhu, Maria ForsythMaria Forsyth, David MecerreyesProton conducting polymeric membranes are highly searched in many different technologies ranging from energy to biosensing. Protic ionic liquids and their polymeric version represent a new family of proton conducting molecules with relatively facile synthesis and excellent properties. In this work, protic poly(ionic liquids) having the most popular phosphonium counter-cations are presented for the first time. The synthesis is carried out through proton transfer reactions or through ion exchange reactions by using commercially available tertiary phosphines. Tributyl-, trioctyl-, and tricyclohexyl-phosphine are selected to form the desired cations. Polystyrene sulfonic acid, poly(2-acrylamido-2-methyl-1-propanesulfonic acid), and lithium poly[(4-styrenesulfonyl) (trifluoromethanesulfonyl)imide] polymers are used to form the polymeric anions. The chemical structure of the protic poly(ionic liquids) is confirmed by spectroscopic characterizations such as Fourier transform infrared and nuclear magnetic resonance spectroscopies. Thermal properties of the polymer are characterized by means of differential scanning calorimetry and thermogravimetric analysis. Polymers exhibit good membrane forming ability as well as high ionic conductivities in the range of 10-8 to 10-3 S cm-1 from 30 to 90 °C.
History
Journal
Macromolecular rapid communicationsVolume
39Issue
3Article number
1700627Publisher
WileyLocation
Weinheim, GermanyPublisher DOI
ISSN
1022-1336eISSN
1521-3927Language
engPublication classification
C1 Refereed article in a scholarly journalCopyright notice
2017, WILEY-VCH Verlag GmbHUsage metrics
Categories
Keywords
conductivitypolymer electrolyte membrane (PEM)protic ionic liquidsproton conducting polymersthermal stabilityAnionsCalorimetry, Differential ScanningCationsImidesIonic LiquidsMagnetic Resonance SpectroscopyMembranes, ArtificialPhosphinesPolymersProtonsSpectroscopy, Fourier Transform InfraredThermogravimetryScience & TechnologyPhysical SciencesPolymer ScienceNUCLEAR-MAGNETIC-RESONANCETRIFLIC ACIDPOLYMERIZATION