Reducing photoyellowing of wool fabrics with silica coated ZnO nanoparticles
Version 2 2024-06-03, 16:40Version 2 2024-06-03, 16:40
Version 1 2015-02-25, 13:01Version 1 2015-02-25, 13:01
journal contribution
posted on 2024-06-03, 16:40authored byM Zhang, Bin TangBin Tang, L Sun, X Wang
Though ZnO nanoparticles (NPs) are an excellent UV absorber, their photocatalytic activity greatly limits the application areas of these particles. Under sunlight exposure, ZnO NPs used as a UV absorber can accelerate the wool yellowing process by generating free radicals. To reduce this photocatalysis effect, a physical barrier has been fabricated by coating the ZnO NPs with a silica layer (ZnO@SiO2), hence providing good UV-shielding with low photocatalytic activity. The structure and optical properties of ZnO and ZnO@SiO2 NPs were characterized by transmission electron microscope (TEM) and UV–Vis spectrum. The photocatalytic activity of ZnO and ZnO@SiO2 NPs was evaluated by photo-degradation of Rhodamine B. The ZnO and ZnO@SiO2 NPs were applied to knitted wool fabrics using the dip coating method. The treated wool fabrics were characterized by a scanning electron microscope (SEM) and the photoyellowing level of treated fabrics after exposure under simulated sunlight was evaluated by a Datacolor Spectraflash spectrophotometer. The ZnO@SiO2 NPs demonstrated excellent protection of wool against photoyellowing.