Deakin University
Browse

File(s) under embargo

Refining Codes for Locality Sensitive Hashing

journal contribution
posted on 2023-08-11, 03:12 authored by Huawen Liu, Wenhua Zhou, Zongda Wu, Shichao Zhang, Gang LiGang Li, Xuelong Li
Learning to hash is of particular interest in information retrieval for large-scale data due to its high efficiency and effectiveness. Most studies in hashing concentrate on constructing new hashing models, but rarely touch the correlation and redundancy between hash bits derived. In this article, we first introduce a general schema of hash bit reduction to derive compact and informative binary codes for hashing techniques. Further, we take locality sensitive hashing, one of the most widely-used hashing methods, as an example and propose a novel and two-stage binary code refinement method under the reduction schema. Specifically, the proposed method includes two stages, i.e., bit evaluation and bit refinement. The former stage aims to initially extract a small portion of informative hash bits in terms of their importance and quality evaluated by bit balance and similarity preservation. Then, the representation capabilities of the reduced hash bits are strengthened further by refining their binary values. The purpose of refinement is to lessen the correlations and redundancies between the reduced bits, making themselves more discriminative. The experimental results on three widely-used data collections confirm the effectiveness of the proposed bit reduction method and its superiority over the state-of-the-art hashing methods, as well as a bit selection method.

History

Journal

IEEE Transactions on Knowledge and Data Engineering

Pagination

1-11

Location

Piscataway, N.J.

ISSN

1041-4347

eISSN

1558-2191

Language

eng

Publication classification

C1 Refereed article in a scholarly journal

Publisher

IEEE

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports