Deakin University
Browse

Regulation of Denitrification Genes in Neisseria meningitidis by Nitric Oxide and the Repressor NsrR

Download (300.81 kB)
journal contribution
posted on 2007-01-01, 00:00 authored by J Rock, Melanie Thomson, R Read, J Moir
The human pathogen Neisseria meningitidis is capable of growth using the denitrification of nitrite to nitrous oxide under microaerobic conditions. This process is catalyzed by two reductases: nitrite reductase (encoded by aniA) and nitric oxide (NO) reductase (encoded by norB). Here, we show that in N. meningitidis MC58 norB is regulated by nitric oxide via the product of gene NMB0437 which encodes NsrR. NsrR is a repressor in the absence of NO, but norB expression is derepressed by NO in an NsrR-dependent manner. nsrR-deficient mutants grow by denitrification more rapidly than wild-type N. meningitidis, and this is coincident with the upregulation of both NO reductase and nitrite reductase even under aerobic conditions in the absence of nitrite or NO. The NsrR-dependent repression of aniA (unlike that of norB) is not lifted in the presence of NO. The role of NsrR in the control of expression of aniA is linked to the function of the anaerobic activator protein FNR: analysis of nsrR and fnr single and nsrR fnr double mutants carrying an aniA promoter lacZ fusion indicates that the role of NsrR is to prevent FNR-dependent aniA expression under aerobic conditions, indicating that FNR in N. meningitidis retains considerable activity aerobically.

History

Journal

Journal of Bacteriology

Volume

189

Pagination

1138 - 1144

Location

Washington, DC

Open access

  • Yes

ISSN

0021-9193

Language

eng

Publication classification

C1.1 Refereed article in a scholarly journal

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC