Deakin University
Browse

File(s) under permanent embargo

Reversible energy absorbing meta-sandwiches by FDM 4D printing

journal contribution
posted on 2020-05-01, 00:00 authored by M Bodaghi, A Serjouei, Ali ZolfagharianAli Zolfagharian, M Fotouhi, H Rahman, D Durand
The aim of this paper is to introduce dual-material auxetic meta-sandwiches by four-dimensional (4D) printing technology for reversible energy absorption applications. The meta-sandwiches are developed based on an understanding of hyper-elastic feature of soft polymers and elasto-plastic behaviors of shape memory polymers and cold programming derived from theory and experiments. Dual-material lattice-based meta-structures with different combinations of soft and hard components are fabricated by 4D printing fused deposition modelling technology. The feasibility and performance of reversible dual-material meta-structures are assessed experimentally and numerically. Computational models for the meta-structures are developed and verified by the experiments. Research trials show that the dual-material auxetic designs are capable of generating a range of non-linear stiffness as per the requirement of energy absorbing applications. It is found that the meta-structures with hyper-elastic and/or elasto-plastic features dissipate energy and exhibit mechanical hysteresis characterized by non-coincident compressive loading-unloading curves. Mechanical hysteresis can be achieved by leveraging elasto-plasticity and snap-through-like mechanical instability through compression. Experiments also reveal that the mechanically induced plastic deformation and dissipation processes are fully reversible by simply heating. The material-structural model, concepts and results provided in this paper are expected to be instrumental towards 4D printing tunable meta-sandwiches for reversible energy absorption applications.

History

Journal

International journal of mechanical sciences

Volume

173

Pagination

1 - 11

Publisher

Elsevier

Location

Amsterdam, The Netherlands

ISSN

0020-7403

Language

eng

Publication classification

C Journal article; C1 Refereed article in a scholarly journal