We report on the impact of changes in the protic ionic liquid (pIL) cation on the fibrilisation kinetics and the conversion of the A 16-22 from monomers to amyloid fibrils. When we compare the use of primary, secondary, and tertiary amines we find that the primary amine results in the greatest conversion into amyloid fibrils. We show that the pIL is directly interacting with the peptide and this likely drives the difference in conversion and kinetics observed.