Deakin University
Browse
li-rootcauseanalysis-2019.pdf (1.38 MB)

Root Cause Analysis of Traffic Anomalies Using Uneven Diffusion Model

Download (1.38 MB)
Version 2 2024-06-05, 02:22
Version 1 2020-03-20, 10:35
journal contribution
posted on 2024-06-05, 02:22 authored by GL Huang, K Deng, Y Ren, Jianxin LiJianxin Li
Detection and analysis of traffic anomalies are important for the development of intelligent transportation systems. In particular, the root causes of traffic anomalies in road networks as well as their propagation and influence to the surrounding areas are highly meaningful. The root cause analysis of traffic anomalies aims to identify those road segments, where the traffic anomalies are detected by the traffic statuses significantly deviating from the usual condition and are originated due to incidents occurring in those roads such as traffic accidents or social events. The existing methods for traffic anomaly root cause analysis detect all traffic anomalies first and then apply, implicitly or explicitly, specified causal propagation rules to infer the root cause. However, these methods require reliable detection techniques to accurately identify all traffic anomalies and extensive domain knowledge of city traffic to specify plausible causal propagation rules in road networks. In contrast, this paper proposes an innovative and integrated root cause analysis method. The proposed method is featured by 1) defining a visible outlier index as the probabilistic indicator of traffic anomalies/disturbances and 2) automatically learning spatiotemporal causal relationship from historical data to build an uneven diffusion model for root cause analysis. The accuracy and effectiveness of the proposed method have been demonstrated by experiments conducted on a trajectory dataset with 2.5 billion location records of 27 266 taxies in Shenzhen city.

History

Journal

IEEE Access

Volume

7

Pagination

16206-16216

Location

Piscataway, N.J.

Open access

  • Yes

ISSN

2169-3536

eISSN

2169-3536

Language

eng

Publication classification

C1 Refereed article in a scholarly journal

Copyright notice

2013, IEEE

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC