Abstract
Background
Ageing is associated with a decline in skeletal muscle mass and function (strength and power), known as sarcopenia. Inadequate dietary protein and inactivity have been shown to accelerate sarcopenia outcomes, occurring at different rates in males and females. Regardless, active older adults who often exceed the exercise guidelines still show signs of sarcopenia. This study aimed to explore the link between age, physical activity, protein intake, and biological sex with skeletal muscle mass, strength, power, and physical capacity/performance in active older adults. Fifty-four active older adults were recruited from this trial and grouped according to age (middle aged: 50–59 years, and older age: ≥ 60 years), exercise volume (low: ≥ 90–149 min/week, moderate: ≥ 150–299 min/week, and high: ≥ 300 min/week), protein intake (low: < 0.8 g/kg body mass (BM), moderate: ≥ 0.8–1.19g /kg BM, and high: ≥ 1.2 g/kg BM), and biological sex (males and females). Skeletal muscle and fat mass (dual X-ray absorptiometry), strength (1-repetition maximum using leg press, chest press, lateral pull down, and hand grip), power (counter movement jump), and general fitness (cardiorespiratory capacity and gait speed) were assessed. Data were grouped based on variables, and a general linear model (ANCOVA) or an independent t test was used to determine between group differences.
Results
Fifty three of the total participants’ data were analysed. The middle-aged group had 18%, 11%, and 10% higher leg press, chest press, and lateral pull down, respectively, compared to the older-aged group (p < .05). There were no significant differences between different levels of training volume and any of the outcomes. Higher protein intakes were associated with significantly less body fat mass (p = .005) and a trend towards a higher leg press (p = .053) and higher relative power (W/kg) (p = .056) compared with the moderate and low protein intake groups. Significant differences based on biological sex were observed for all outcomes except for gait speed (p = .611) and cardiorespiratory fitness (p = .147).
Conclusions
Contributions of age, physical activity, daily protein intake, and biological sex can explain the individual variation in outcomes related to changes in body composition, strength, power, and/or cardiorespiratory fitness in a cohort of active older adults.
The preprint version of this work is available on Research Square: https://www.researchsquare.com/article/rs-51873/v1.
Trial Registration
This trial is registered in the ANZCTR.org.au, no. ACTRN12618001088235 (https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=375286).