Deakin University
Browse

Semantic and layered protein function prediction from PPI networks

journal contribution
posted on 2010-01-01, 00:00 authored by W Zhu, Jingyu HouJingyu Hou, Yi-Ping Phoebe Chen
Background The past few years have seen a rapid development in novel high-throughput technologies that have created large-scale data on protein-protein interactions (PPI) across human and most model species. This data is commonly represented as networks, with nodes representing proteins and edges representing the PPIs. A fundamental challenge to bioinformatics is how to interpret this wealth of data to elucidate the interaction of patterns and the biological characteristics of the proteins. One significant purpose of this interpretation is to predict unknown protein functions. Although many approaches have been proposed in recent years, the challenge still remains how to reasonably and precisely measure the functional similarities between proteins to improve the prediction effectiveness.

Results We used a Semantic and Layered Protein Function Prediction (SLPFP) framework to more effectively predict unknown protein functions at different functional levels. The framework relies on a new protein similarity measurement and a clustering-based protein function prediction algorithm. The new protein similarity measurement incorporates the topological structure of the PPI network, as well as the protein's semantic information in terms of known protein functions at different functional layers. Experiments on real PPI datasets were conducted to evaluate the effectiveness of the proposed framework in predicting unknown protein functions.

Conclusion The proposed framework has a higher prediction accuracy compared with other similar approaches. The prediction results are stable even for a large number of proteins. Furthermore, the framework is able to predict unknown functions at different functional layers within the Munich Information Center for Protein Sequence (MIPS) hierarchical functional scheme. The experimental results demonstrated that the new protein similarity measurement reflects more reasonably and precisely relationships between proteins.

History

Journal

Journal of theoretical biology

Volume

267

Issue

2

Pagination

129 - 136

Publisher

Academic Press

Location

London, England

ISSN

0022-5193

eISSN

1095-8541

Language

eng

Publication classification

C1 Refereed article in a scholarly journal

Copyright notice

2010, Elsevier Ltd.

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC