Signalling corporate collapse using a dual classification scheme:Australian evidence
journal contribution
posted on 2009-06-04, 00:00authored byGhassan Hossari
Regardless of the technical procedure used in signalling corporate collapse, the bottom line rests on the predictive power of the corresponding statistical model. In that regard, it is imperative to empirically test the model using a data sample of both collapsed and non-collapsed companies. A superior model is one that successfully classifies collapsed and non-collapsed companies in their respective categories with a high degree of accuracy. Empirical studies of this nature have thus far done one of two things. (1) Some have classified companies based on a specific statistical modelling process. (2) Some have classified companies based on two (sometimes – but rarely – more than two) independent statistical modelling processes for the purposes of comparing one with the other. In the latter case, the mindset of the researchers has been – invariably – to pitch one procedure against the other. This paper raises the question, why pitch one statistical process against another; why not make the two procedures work together? As such, this paper puts forward an innovative dual-classification scheme for signalling corporate collapse: dual in the sense that it relies on two statistical procedures concurrently. Using a data sample of Australian publicly listed companies, the proposed scheme is tested against the traditional approach taken thus far in the pertinent literature. The results demonstrate that the proposed dual-classification scheme signals collapse with a higher degree of accuracy.
History
Journal
International review of business research papers
Volume
5
Issue
4
Pagination
134 - 146
Publisher
World Business Institute
Location
Melbourne, Vic.
ISSN
1837-5685
eISSN
1832-9543
Language
eng
Publication classification
C1 Refereed article in a scholarly journal; C Journal article