Deakin University
Browse

File(s) not publicly available

Silent mutations at codons 65 and 66 in reverse transcriptase alleviate indel formation and restore fitness in subtype B HIV-1 containing D67N and K70R drug resistance mutations

journal contribution
posted on 2024-03-28, 04:36 authored by S Telwatte, AC Hearps, A Johnson, CF Latham, K Moore, Paul AgiusPaul Agius, M Tachedjian, S Sonza, N Sluis-Cremer, PR Harrigan, G Tachedjian
Resistance to combined antiretroviral therapy (cART) in HIV-1-infected individuals is typically due to non-synonymous mutations that change the protein sequence; however, the selection of synonymous or 'silent' mutations in the HIV-1 genome with cART has been reported. These silent K65K and K66K mutations in the HIV-1 reverse transcriptase (RT) occur in over 35% of drug-experienced individuals and are highly associated with the thymidine analog mutations D67N and K70R, which confer decreased susceptibility to most nucleoside and nucleotide RT inhibitors. However, the basis for selection of these silent mutations under selective drug pressure is unknown. Using Illumina next-generation sequencing, we demonstrate that the D67N/K70R substitutions in HIV-1 RT increase indel frequency by 100-fold at RT codons 65-67, consequently impairing viral fitness. Introduction of either K65K or K66K into HIV-1 containing D67N/K70R reversed the error-prone DNA synthesis at codons 65-67 in RT and improved viral replication fitness, but did not impact RT inhibitor drug susceptibility. These data provide new mechanistic insights into the role of silent mutations selected during antiretroviral therapy and have broader implications for the relevance of silent mutations in the evolution and fitness of RNA viruses.

History

Journal

Nucleic Acids Research

Volume

43

Pagination

3256-3271

Location

England

ISSN

0305-1048

eISSN

1362-4962

Language

en

Publication classification

C1.1 Refereed article in a scholarly journal

Issue

6

Publisher

Oxford University Press (OUP)