Deakin University

File(s) under permanent embargo

Skeletal muscle microvascular-linked improvements in glycemic control from resistance training in individuals with type 2 diabetes

Version 2 2024-06-06, 09:56
Version 1 2017-08-03, 11:26
journal contribution
posted on 2024-06-06, 09:56 authored by RD Russell, D Hu, T Greenaway, SJ Blackwood, RM Dwyer, JE Sharman, G Jones, KA Squibb, AA Brown, P Otahal, M Boman, H Al-Aubaidy, D Premilovac, CK Roberts, S Hitchins, SM Richards, S Rattigan, Michelle KeskeMichelle Keske
OBJECTIVE: Insulin increases glucose disposal in part by enhancing microvascular blood flow (MBF) and substrate delivery to myocytes. Insulin's microvascular action is impaired with insulin resistance and type 2 diabetes. Resistance training (RT) improves glycemic control and insulin sensitivity, but whether this improvement is linked to augmented skeletal muscle microvascular responses in type 2 diabetes is unknown. RESEARCH DESIGN AND METHODS: Seventeen (11 male and 6 female; 52 ± 2 years old) sedentary patients with type 2 diabetes underwent 6 weeks of whole-body RT. Before and after RT, participants who fasted overnight had clinical chemistries measured (lipids, glucose, HbA1c, insulin, and advanced glycation end products) and underwent an oral glucose challenge (OGC) (50 g × 2 h). Forearm muscle MBF was assessed by contrast-enhanced ultrasound, skin MBF by laser Doppler flowmetry, and brachial artery flow by Doppler ultrasound at baseline and 60 min post-OGC. A whole-body DEXA scan before and after RT assessed body composition. RESULTS: After RT, muscle MBF response to the OGC increased, while skin microvascular responses were unchanged. These microvascular adaptations were accompanied by improved glycemic control (fasting blood glucose, HbA1c, and glucose area under the curve [AUC] during OGC) and increased lean body mass and reductions in fasting plasma triglyceride, total cholesterol, advanced glycation end products, and total body fat. Changes in muscle MBF response after RT significantly correlated with reductions in fasting blood glucose, HbA1c, and OGC AUC with adjustment for age, sex, % body fat, and % lean mass. CONCLUSIONS: RT improves OGC-stimulated muscle MBF and glycemic control concomitantly, suggesting that MBF plays a role in improved glycemic control from RT.



Diabetes care






Arlington, Va.







Publication classification

C Journal article, C1 Refereed article in a scholarly journal

Copyright notice

2017, American Diabetes Association




American Diabetes Association