Deakin University
Browse

File(s) under permanent embargo

Skeletal muscle microvascular recruitment by physiological hyperinsulinemia precedes increases in total blood flow

Version 2 2024-06-04, 10:49
Version 1 2017-05-12, 16:31
journal contribution
posted on 2024-06-04, 10:49 authored by Michelle KeskeMichelle Keske, D Dawson, ADH Clark, JR Lindner, S Rattigan, MG Clark, EJ Barrett
Supraphysiological doses of insulin enhance total limb blood flow and recruit capillaries in skeletal muscle. Whether these processes change in response to physiological hyperinsulinemia is uncertain. To examine this, we infused either saline (n = 6) or insulin (euglycemic clamp, 3.0 mU x min(-1) x kg(-1), n = 9) into anesthetized rats for 120 min. Femoral artery flow was monitored continuously using a Doppler flow probe, and muscle microvascular recruitment was assessed by metabolism of infused 1-methylxanthine (1-MX) and by contrast-enhanced ultrasound (CEU). Insulin infusion raised plasma insulin concentrations by approximately 10-fold. Compared with saline, physiological hyperinsulinemia increased femoral artery flow (1.02 +/- 0.10 vs. 0.68 +/- 0.09 ml/min; P < 0.05), microvascular recruitment (measured by 1-MX metabolism [6.6 +/- 0.5 vs. 4.5 +/- 0.48 nmol/min; P < 0.05] as well as by CEU [167.0 +/- 39.8 vs. 28.2 +/- 13.8%; P < 0.01]), and microvascular flow velocity (beta, 0.14 +/- 0.02 vs. 0.09 +/- 0.02 s(-1)). Subsequently, we studied the time dependency of insulin's vascular action in a second group (n = 5) of animals. Using CEU, microvascular volume was measured at 0, 30, and 90 min of insulin infusion. Insulin augmented microvascular perfusion within 30 min (52.8 +/- 14.8%), and this persisted at 90 min (64.6 +/- 9.9%). Microvascular recruitment occurred without changes to femoral artery flow or beta. We conclude that insulin increases tissue perfusion by recruiting microvascular beds, and at physiological concentrations this precedes increases in total muscle blood flow by 60-90 min.

History

Journal

Diabetes

Volume

51

Pagination

42-48

Location

New York, N.Y.

ISSN

0012-1797

eISSN

1939-327X

Language

eng

Publication classification

C1.1 Refereed article in a scholarly journal

Copyright notice

2002, American Diabetes Association

Issue

1

Publisher

American Diabetes Association