File(s) under permanent embargo
Soil carbon stocks in wetlands of New Zealand and impact of land conversion since European settlement
journal contribution
posted on 2015-10-01, 00:00 authored by A-G E Ausseil, Hizbullah Jamali, B R Clarkson, N E GolubiewskiFreshwater wetlands provide a range of ecosystem services, one of which is climate regulation. They are known to contain large pools of carbon (C) that can be affected by land-use change. In New Zealand, only 10 % of the original freshwater wetlands remain due to conversion into agriculture. This study presents the first national estimation of C stocks in freshwater wetlands based on the compilation of soil carbon data from 126 sites across the country. We estimated C stocks for two soil sample types (mineral and organic) in different classes of wetlands (fen, bog, swamp, marsh, pakihi and ephemeral), and extrapolated C stocks to national level using GIS. Bogs had high C content and low bulk densities, while ephemeral wetlands were the reverse. A regression between bulk density and C content showed a high influence of the soil type. Average C densities (average ± standard error) were 1,348 ± 184 t C ha−1 at full peat depth (average of 3.9 m) and 102 ± 5 t C ha−1 (0.3 m depth) for organic soils, and 121 ± 24 t C ha−1 (0.3 m depth) for mineral soils. At national level, C stocks were estimated at 11 ± 1 Mt (0.3 m depth) and 144 ± 17 Mt (full peat depth) in organic soils, and 23 ± 1 Mt (0.3 m depth) in mineral soils. Since European settlement, 146,000 ha of organic soils have been converted to agriculture, which could release between 0.5 and 2 Mt CO2 year−1, equivalent to 1–6 % of New Zealand’s total agricultural greenhouse gas emissions.
History
Journal
Wetlands ecology and managementVolume
23Issue
5Pagination
947 - 961Publisher
SpringerLocation
Berlin, GermanyPublisher DOI
ISSN
0923-4861eISSN
1572-9834Language
engPublication classification
C Journal article; C1 Refereed article in a scholarly journalCopyright notice
2015, SpringerUsage metrics
Categories
No categories selectedKeywords
Freshwater wetlandsCarbon stocksNational scaleLand-use changeConversionScience & TechnologyLife Sciences & BiomedicinePhysical SciencesEnvironmental SciencesWater ResourcesEnvironmental Sciences & EcologyFRESH-WATER WETLANDSDRAINED PEAT SOILSORGANIC-CARBONSUBSIDENCE RATESMETHANE FLUXESNITROUS-OXIDECO2PEATLANDSEMISSIONSN2O