File(s) under permanent embargo
Somatostatin modulates G-CSF-induced but not interleukin-3-induced proliferative responses in myeloid 32D cells via activation of somatostatin receptor subtype 2
journal contribution
posted on 2001-01-01, 00:00 authored by S Oomen, Alister WardAlister Ward, L Hofland, S Lamberts, B Löwenberg, I TouwSomatostatin, originally identified as a peptide involved in neurotransmission, functions as an inhibitor of multiple cellular responses, including hormonal secretion and proliferation. Somatostatin acts through activation of G-protein-coupled receptors of which five subtypes have been identified. We have recently established that human CD34/c-kit expressing hematopoietic progenitors and acute myeloid leukemia (AML) cells exclusively express SSTR2. A major mechanism implicated in the antiproliferative action of somatostatin involves activation of the SH2 domain-containing protein tyrosine phosphatase SHP-1. While 0.1-1 x 10(-9) M of somatostatin, or its synthetic stable analog octreotide, can inhibit G-CSF-induced proliferation of AML cells, little or no effects are seen on GM-CSF- or IL-3-induced responses.
MATERIALS AND METHODS: To study the mechanisms underlying the antiproliferative responses of myeloblasts to somatostatin, clones of the IL-3-dependent murine cell line 32D that stably express SSTR2 and G-CSF receptors were generated. RESULTS: Similar to AML cells, octreotide inhibited G-CSF-induced but not IL-3-induced proliferative responses of 32D[G-CSF-R/SSTR2] cells. Somatostatin induced SHP-1 activity and inhibited G-CSF-induced, but not IL-3-induced, activation of the signal transducer and activator of transcription proteins STAT3 and STAT5.
CONCLUSION: Based on these data and previous results, we propose a model in which recruitment and activation of the tyrosine phosphatase SHP-1 by SSTR2 is involved in the selective negative action of somatostatin on G-CSF-R signaling.
MATERIALS AND METHODS: To study the mechanisms underlying the antiproliferative responses of myeloblasts to somatostatin, clones of the IL-3-dependent murine cell line 32D that stably express SSTR2 and G-CSF receptors were generated. RESULTS: Similar to AML cells, octreotide inhibited G-CSF-induced but not IL-3-induced proliferative responses of 32D[G-CSF-R/SSTR2] cells. Somatostatin induced SHP-1 activity and inhibited G-CSF-induced, but not IL-3-induced, activation of the signal transducer and activator of transcription proteins STAT3 and STAT5.
CONCLUSION: Based on these data and previous results, we propose a model in which recruitment and activation of the tyrosine phosphatase SHP-1 by SSTR2 is involved in the selective negative action of somatostatin on G-CSF-R signaling.