Deakin University
Browse

File(s) under permanent embargo

Spectral kernels for classification

journal contribution
posted on 2005-01-01, 00:00 authored by W Li, Kok-Leong Ong, W K Ng, A Sun
Spectral methods, as an unsupervised technique, have been used with success in data mining such as LSI in information retrieval, HITS and PageRank in Web search engines, and spectral clustering in machine learning. The essence of success in these applications is the spectral information that captures the semantics inherent in the large amount of data required during unsupervised learning. In this paper, we ask if spectral methods can also be used in supervised learning, e.g., classification. In an attempt to answer this question, our research reveals a novel kernel in which spectral clustering information can be easily exploited and extended to new incoming data during classification tasks. From our experimental results, the proposed Spectral Kernel has proved to speedup classification tasks without compromising accuracy.

History

Journal

Lecture notes in computer science

Volume

3589

Pagination

520 - 529

Publisher

Springer-Verlag

Location

Berlin, Germany

ISSN

0302-9743

eISSN

1611-3349

Language

eng

Publication classification

C1 Refereed article in a scholarly journal

Copyright notice

2005, Springer-Verlag Berlin Heidelberg

Usage metrics

    Research Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC