Deakin University
Browse

File(s) under permanent embargo

State estimation of memristor-based recurrent neural networks with time-varying delays based on passivity theory

Version 2 2024-06-13, 09:17
Version 1 2023-10-26, 03:21
journal contribution
posted on 2024-06-13, 09:17 authored by R Rakkiyappan, A Chandrasekar, L Shanmugam, Ju H Park
This article deals with the state estimation problem of memristor‐based recurrent neural networks (MRNNs) with time‐varying delay based on passivity theory. The main purpose is to estimate the neuron states, through available output measurements such that for all admissible time delay, the dynamics of the estimation error is passive from the control input to the output error. Based on the Lyapunov–Krasovskii functional (LKF) involving proper triple integral terms, convex combination technique, and reciprocal convex technique, a delay‐dependent state estimation of MRNNs with time‐varying delay is established in terms of linear matrix inequalities (LMIs). The information about the neuron activation functions and lower bound of the time‐varying delays is fully used in the LKF. Then, the desired estimator gain matrix is accomplished by solving LMIs. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed theoretical results.

History

Journal

Complexity

Volume

19

Season

Mar-Apr

Pagination

32-43

Location

Chichester, Eng.

ISSN

1076-2787

Language

eng

Copyright notice

2013, Wiley Periodicals, Inc.

Issue

4

Publisher

John Wiley & Sons

Usage metrics

    Research Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC