Deakin University
Browse

File(s) under permanent embargo

Statistical features-based real-time detection of drifted Twitter spam

Version 2 2024-06-06, 00:28
Version 1 2017-03-09, 14:31
journal contribution
posted on 2024-06-06, 00:28 authored by C Chen, Y Wang, J Zhang, Y Xiang, W Zhou, G Min
Twitter spam has become a critical problem nowadays. Recent works focus on applying machine learning techniques for Twitter spam detection, which make use of the statistical features of tweets. In our labeled tweets data set, however, we observe that the statistical properties of spam tweets vary over time, and thus, the performance of existing machine learning-based classifiers decreases. This issue is referred to as "Twitter Spam Drift". In order to tackle this problem, we first carry out a deep analysis on the statistical features of one million spam tweets and one million non-spam tweets, and then propose a novel Lfun scheme. The proposed scheme can discover "changed" spam tweets from unlabeled tweets and incorporate them into classifier's training process. A number of experiments are performed to evaluate the proposed scheme. The results show that our proposed Lfun scheme can significantly improve the spam detection accuracy in real-world scenarios.

History

Journal

IEEE transactions on information forensics and security

Volume

12

Article number

4

Pagination

914-925

Location

Piscataway, N.J.

ISSN

1556-6013

Language

eng

Publication classification

C Journal article, C1 Refereed article in a scholarly journal

Copyright notice

2016, IEEE

Issue

4

Publisher

IEEE