Deakin University
Browse

File(s) under permanent embargo

Stimulating Mitochondrial Biogenesis with Deoxyribonucleosides Increases Functional Capacity in ECHS1-Deficient Cells

journal contribution
posted on 2022-11-24, 01:33 authored by Harrison BurginHarrison Burgin, Jordan James Crameri, Diana Stojanovski, M Isabel G Lopez Sanchez, Mark ZiemannMark Ziemann, Matthew McKenzieMatthew McKenzie
The lack of effective treatments for mitochondrial disease has seen the development of new approaches, including those that stimulate mitochondrial biogenesis to boost ATP production. Here, we examined the effects of deoxyribonucleosides (dNs) on mitochondrial biogenesis and function in Short chain enoyl-CoA hydratase 1 (ECHS1) ‘knockout’ (KO) cells, which exhibit combined defects in both oxidative phosphorylation (OXPHOS) and mitochondrial fatty acid β-oxidation (FAO). DNs treatment increased mitochondrial DNA (mtDNA) copy number and the expression of mtDNA-encoded transcripts in both CONTROL (CON) and ECHS1 KO cells. DNs treatment also altered global nuclear gene expression, with key gene sets including ‘respiratory electron transport’ and ‘formation of ATP by chemiosmotic coupling’ increased in both CON and ECHS1 KO cells. Genes involved in OXPHOS complex I biogenesis were also upregulated in both CON and ECHS1 KO cells following dNs treatment, with a corresponding increase in the steady-state levels of holocomplex I in ECHS1 KO cells. Steady-state levels of OXPHOS complex V, and the CIII2/CIV and CI/CIII2/CIV supercomplexes, were also increased by dNs treatment in ECHS1 KO cells. Importantly, treatment with dNs increased both basal and maximal mitochondrial oxygen consumption in ECHS1 KO cells when metabolizing either glucose or the fatty acid palmitoyl-L-carnitine. These findings highlight the ability of dNs to improve overall mitochondrial respiratory function, via the stimulation mitochondrial biogenesis, in the face of combined defects in OXPHOS and FAO due to ECHS1 deficiency.

History

Journal

International Journal of Molecular Sciences

Volume

23

Article number

12610

Pagination

1-19

Location

Basel, Switzerland

ISSN

1422-0067

eISSN

1422-0067

Language

English

Publication classification

C1 Refereed article in a scholarly journal

Issue

20

Publisher

MDPI