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In this work we present the definition of strong fuzzy subsethood mea-
sure as a unifiying concept for the different notions of fuzzy subsethood
that can be found in the literature. We analyze the relations of our new
concept with the definitions by Kitainik ( [20]), Young ( [26]) and Sinha
and Dougherty ( [23]) and we prove that the most relevant properties of
the latter are preserved. We show also several construction methods.
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1 INTRODUCTION

Traditionally, fuzzy set inclusion is defined, following the ideas of
Zadeh [27], as follows: For two fuzzy sets A and B defined over the ref-
erential set X , A B if and only if A(x) B(x) for every x X .
Many researchers pointed out that this definition is too rigid [5,20,23, 25,

26], since, given two fuzzy sets A and B over the same referential, either A is
a subset of B ( that is, every membership value of an element of the referential
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to the set A is less than or equal the membership of the same element to the
set B) or it is not a subset at al, even if there exists only one single element
in the referential whose membership to A is greater than its membership to
Bl. Trying to solve this problem, in 1980 Bandler and Kohout [2] suggested
the following definition: Given two fuzzy sets A and B, the degree to which
A is a subset of B is given by infx X j( A(x) B (x)), where j : [0 1]2

[0 1] is a mapping such that j (0 0) j (0 1) j(1 1) 1 and j(1 0) 0.
This definition induced (see [13]) to consider mappings : F(X) F(X)
[0 1] to represent how much a fuzzy set A is contained in another fuzzy set
B. Here F(X) denotes the class of fuzzy sets defined over the universe X .
Several different proposals for the axioms to be fulfilled by such mappings

have been presented in the literature [8, 10, 13, 20, 23, 26], even considering
some extensions [4]. They provide different approaches to the same idea,
differing essentially on how the idea of maximal inclusion must be under-
stood, i.e., which condition should be linked to the maximal possible value
of the mapping . Note that this concept of inclusion is related to the equal-
ity concept, since equality between two fuzzy sets A and B can be defined
as simultaneous maximal inclusion of A in B and of B in A. Moreover, the
concept of inclusion can also be related to the concept of union of fuzzy sets.
Our main goal in this work is to unify the different approaches to the con-

cept of subsethood in a single definition that catches the most important fea-
tures common to all the previous definitions. We intend to provide a unified
framework that covers most of the already existing approaches and would be
of interest for future possible theoretical developments as well as for appli-
cations. To do so we consider the definition of subsethood in the strong sense
proposed by Dubois et al. [12] as a reference.
In this way, we introduce the concept of strong fuzzy subsethood measure,

for which a minimal set of axioms is provided. These axioms are common to
both Young’s [26] and Sinha and Dougherty’s [23] definitions, so our defini-
tion generalizes these two ones. Moreover, strong fuzzy subsethood measures
can be built in terms of aggregation functions and implication functions, and
this fact allows us to define strong equality indexes [7] by means of strong
fuzzy subsethood measures.
The structure of this paper is as follows. We start recalling some basic

concepts in Section 2. Section 3 is devoted to recall some of the definitions
of subsethood in the literature. In Section 4 we present the concept of strong
fuzzy subsethood measure. In Section 5 we introduce several construction
methods in terms of aggregation functions and implications. Section 6 stud-
ies the relation of our concept with that of strong inclusion introduced by
Dubois et al. Next, we relate our concepts with strong equality indexes and
we show how the later can be obtained from the former. We finish with some
concluding remarks.
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2 PRELIMINARIES

A fuzzy set A over a referential set X is given as (x A(x)) x X , where

A : X [0 1] is a mapping. We only deal in this work with finite referen-
tial sets, and, if not otherwise stated, we will assume that card(X) n. We
denote by F(X ) the class of all fuzzy sets defined over the referential set X .
For A B F(X) we define the union and intersection of A and B as

A B (x max( A(x) B(x))) x X

and

A B (x min( A(x) B(x))) x X

respectively. Moreover, by abuse of notation, for a b [0 1] we will also
denote a b max(a b) and a b min(a b).
Given two fuzzy sets A B F(X) A is said to be included in B in the

sense of Zadeh if and only if A(x) B(x) for every x X . In this case,
we write A B.
Given a mapping s : X X , if A F(X ), we denote by s(A) the set

(x s(A)(x) A(s(x))) x X . If k [0 1], by abuse of notation we
also denote by k the fuzzy set A such that A(x) k for every x X .
A (strong) negation is a decreasing and involutive mapping c : [0 1]

[0 1] such that c(0) 1 and c(1) 0. For every strong negation c there
exists a single point e [0 1] such that c(e) e. This point is called equi-
librium point of the negation c. Given a strong negation c and A F(X), the
complementary of A, denoted by Ac, is the fuzzy set

Ac (x Ac (x) c( A(x))) x X

For us, an (n-ary) aggregation function [9] is a mapping M : [0 1]n [0 1]
such that

(A1) M(x1 xn) 0 if and only if x1 xn 0;
(A2) M(x1 xn) 1 if and only if x1 xn 1;
(A3) For every (x1 xn),(y1 yn) [0 1]n such that xi yi for

every i 1 n it holds that M(x1 xn) M(y1 yn).

Observe that (A3) refers to the monotonicity of M . If this monotonicity is
strict, then we will say that M satisfies axiom (A3S). Note that this definition
is more restrictive than the usual one given for aggregation functions [19].
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On the other hand, sometimes we will also demand symmetry, that is, that M
fulfills the axiom

(A4) M(x1 xn) M(xp(1) xp(n)) for any p, where p denotes a
permutation, p : 1 n 1 n .

Suppose X x1 xn . Given a fuzzy set A and an aggregation func-
tion M , we denote M(A) M( A(x1) A(xn)).
Another important concept in this work is that of implication. An implica-

tion function (in the sense of Fodor and Roubens, [14,16], see also Baczyński
and Jayaram [1]) is a mapping I : [0 1]2 [0 1] such that, for every
x y z t [0 1]:

(I1) If x z then I (x y) I (z y) ;
(I2) If y t then I (x y) I (x t);
(I3) I (0 x) 1;
(I4) I (x 1) 1;
(I5) I (1 0) 0.

Other properties that may be demanded to implication functions are the
following (see [1]):

(I6) I (1 x) x ;
(I7) I (x I (y z)) I (y I (x z));
(I8) I (x y) 1 if and only if x y;
(I9) I (x 0) c(x) is a strong negation;
(I10) I (x y) y;
(I11) I (x x) 1;
(I12) I (x y) I (c(y) c(x)) for a given strong negation c;
(I13) I is continuous.

Relations between these properties have been exhaustively studied, for
instance, in [6] and [22].

3 DIFFERENT AXIOMATIZATIONS OF THE CONCEPT OF
FUZZY SUBSETHOOD MEASURES

In this section we review some different axiomatizations that have been pro-
posed for fuzzy subsethood measures. We deal with a fixed strong negation c
and we start with Kitainik’s axiomatization.
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Definition 1 [20]. A fuzzy subsethood measure in the sense of Kitainik is a
mapping K : F(X) F(X ) [0 1] such that, for every A B C F(X)

(K1) K (A B) K (Bc Ac) ;
(K2) K (A B C) K (A B) K (A C) ;
(K3) For every one-to-one mapping s : X X, it holds that K (A B)

K (s(A) s(B));
(K4) K restricted to crisp sets coincides with the usual set inclusion.

Regarding this axiomatization, Fodor and Yager proved the following
result.

Theorem 1 [17]. A mapping K : F(X ) F(X ) [0 1] satisfies (K1)-
(K4) if and only if there exists an implication function I satisfying (I12) and
such that, for every A B F(X )

K (A B)
n
min
i 1

I ( A(xi ) B (xi ))

Remark 1. For a fixed K characterized in Theorem 1, and a fixed level
]0 1], we can introduce the -subsethood relation R by

(A B) R if and only if K (A B)

Then the smallest fuzzy set C F(X ) such that (A C) R and (B C) R
can be seen as the -union of the fuzzy sets A and B. For example, consider
I (a b) min(1 1 a b) (Łukasiewicz implication). Then, for any fixed
A B F(X ),

C (x) inf z [0 1] I ( A(x) z) and I ( B(x) z)

max(0 A B(x) 1) TŁ( A B(x))

where TŁ is the Łukasiewicz t-norm, see [21]. Obviously, for 1 the -
union is just the standard Zadeh’s union of fuzzy sets.

Later on, Sinha and Dougherty proposed the following axiomatization.

Definition 2 [23]. A fuzzy subsethood measure in the sense of Sinha and
Dougherty is a mapping SD : F(X) F(X ) [0 1] such that, for every
A B C F(X )

(SD1) SD(A B) 1 if and only if A B;
(SD2) SD(A B) 0 if and only if there exists x X such that A(x) 1

and B(x) 0;
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(SD3) if B C, then SD(A B) SD(A C);
(SD4) if B C, then SD(C A) SD(C B).
(SD5) for every one-to-one mapping s : X X, we have SD(A B)

SD(s(A) s(B));
(SD6) SD(A B) SD(Bc Ac);
(SD7) SD(B C A) SD(B A) SD(C A) ;
(SD8) SD(A B C) SD(A B) SD(A C) ;
(SD9) SD(A B C) SD(A B) SD(A C) .

Apart from this axioms, Sinha and Dougherty also proposed the following
three optional axioms:

(SD10) SD(A B) SD(Ac Bc) 1;
(SD11) if A is a refinement of B, that is, if A(xi ) B(xi ) when B(xi )

e and A(xi ) B(xi ) when B(xi ) e with c(e) e, then

SD(A Ac A Ac) SD(B Bc B Bc);

(SD12) if 1n
� n
i 1 (1 A(xi ) B(xi )) 1, then SD(A B) 1

2 .

Burillo et al. proved in [3] that Axiom (SD9) is a consequence of
Axiom (SD3). Moreover, Kitainik in [20] also settled that for a subsethood
measure fulfilling (K1)-(K4) axioms (SD3) and (SD4) also hold. So even-
tually Sinha and Dougherty’s and Kitainik’s axiomatizations are equivalent,
except for axioms (SD1) and (SD2), since Kitainik only impose them to crisp
sets. In particular, the expression in Theorem 1 does not fulfill Axiom (SD2).
In an attempt to overcome the weaknesses of both Kitainik’s and Sinha and

Dougherty’s proposals, Young ( [26]) proposed the following axiomatization
of what she called weak fuzzy subsethood measure.

Definition 3 [26]. A fuzzy subsethood measure in the sense of Young is a
mapping Y : F(X ) F(X ) [0 1] such that, for every A B C F(X):

(Y1) Y (A B) 1 if and only if A B,
(Y2) if e A, then Y (A Ac) 0 if and only if A 1 (Here, e is the equi-

librium point of the negation c used to build the complementary Ac),
(Y3) if A B C then Y (C A) Y (B A); and if A B then

Y (C A) Y (C B).

However, Young realized that there are many examples in the literature
for which (Y1) does not hold. For this reason, she introduced the following
definition.
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Definition 4 [26]. A weak fuzzy subsethood measure in the sense of Young is
a mapping WY : F(X) F(X ) [0 1] which, for every A B C F(X),
it satisfies (Y2) and (Y3) in Definition 3 and such that there exist A B F(X)
with A B but WY (A B) 1.

Finally, in order to provide appropriate boundary conditions, Fan and Xie
[13] proposes the following definition of a weak fuzzy *-subsethood measure.

Definition 5 [13]. A weak fuzzy *-subsethood measure is a mapping
: F(X ) F(X) [0 1] such that, for every A B C F(X):

(*1) (0 0) (0 1) (1 1) 1,
(*2) (1 0) 0,
(*3) if A B C, then (C A) (B A) and (C A) (C B).

4 STRONG FUZZY SUBSETHOOD MEASURES ON X

A view of inclusion stronger than the ones considered in the definitions of the
previous section is to consider that A is included in B if all the elements in
A are prototypes of B; i.e.,, the mapping S : F(X ) F(X) [0 1] should
verify

A S B if and only if Ac B 1

that is, A(xi ) 0 or B (xi ) 1 for all xi X (cf. [11]).
In [12] it is proposed that when the considered fuzzy subsethood measure

is the strong one, the axioms that must be satisfied by the fuzzy subsethood
measure are (SD2), (SD3), (SD4) and Axiom (SD1) should be replaced by
the following condition:

(A B) 1 if and only if A S B (1)

This proposal has suggested us to introduce and study of fuzzy subsethood
measures with Axiom (SD1) replaced by condition (1).

Definition 6. A mapping S : F(X) F(X ) [0 1] is a strong fuzzy sub-
sethood measure on X, if:

(SF1) S(A B) 1 if and only if A(xi ) 0 or B(xi ) 1 for all i
1 n , that is, A S B;
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(SF2) S(A B) 0 if and only if A 1 and B 0;
(SF3) if A B, then S(A C) S(B C) and S(C A) S(C B).

Regarding axiom (SF3) in this definition, note that we have the following
result, whose proof is obvious.

Proposition 1. Let A B F(X) such that A S B. Then A B.

Example 1. The following are examples of strong fuzzy subsethood measures
in the sense of Definition 6. Note that they are built by means of complemen-
tation using the standard negation c(x) 1 x.

1. 1
n

� n
i 1 (1 A(xi ) B (xi )). This is known as weak inclusion [11].

2. 1
n

� n
i 1(1 A(xi ) A(xi ) B(xi )).

3.

� n
i 1 1 A(xi ) A(xi ) B(xi )� n

i 1 1 A(xi ) A(xi ) B(xi )
� n
i 1 A(xi )(1 B(xi ))

.

4.

�
1

n

n�

i 1

( (1 A(xi ) B(xi )))

�1

, with 1 .

Theorem 2.

(i) Every strong fuzzy subsethood measure is a weak fuzzy subsethood mea-
sures in the sense of Young;

(ii) Every strong fuzzy subsethood measures is a weak fuzzy subsethood mea-
sure in the sense of Fan and Xie.

Proof.

(i) Since S(A B) 1 if and only if A S B, by taking A B with A non
empty and B a fuzzy set which is not normal we see that S(A B) 1.
On the other hand, if (SF2) holds, it follows that if A e, S(A Ac)
0 if and only if A 1. Finally, if A B C , then we have that, on
one hand, S(C A) S(B A) and, on the second hand, S(C A)

S(C B), from (SF3).
(ii) If A B 0, we have that A S B so S(A B) 1. An analogous

calculations completes the proof for (*1) and (*2). Finally, the proof for
(*3) is very similar to that for (Y3) above.

Note that, for example, the following expression

F (A B)

�� n
i 1(1 A(xi ))

� n
i 1 B(xi )

�

� n
i 1 ( A(xi ) 1 A(xi ) B (xi ) 1 B(xi ))
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is a weak fuzzy subsethood measure in the sense of Fan and Xie ( [13]), and
is not a strong fuzzy subsethood measure in the sense of the definition above,
because it does not fulfill (SF3).
It is easy to see in the definition above that

1. If A 0, then S(A B) 1;
2. If B 1, then S(A B) 1;
3. Every strong fuzzy subsethood measure satisfies Axioms (SD3) and

(SD4) of Sinha and Dougherty.

Corollary 1. Let S be a strong fuzzy subsethood measure. The following
items hold:

(i) S satisfies Axioms (SD9) and (SD11);
(ii) S satisfies the inequalities:

S(A B C) S(A C) S(B C)

S(A B C) S(A B) S(A C)

S(A B C) S(A C) S(B C)

Proof. It is straight from the monotonicity condition (SF3).

From this corollary we see that strong fuzzy subsethood measures do not
fulfill Axiom (SD7), but they fulfill the inequality:

S(A B C) S(A C) S(B C)

They do not fulfill Axiom (SD8), either. However they do fulfill the fol-
lowing inequality:

S(A B C) S(A B) S(A C)

Proposition 2. Let S1 Sn be n strong subsethood measures on X and
let M : [0 1]n [0 1] be an aggregation function, i.e., such that (A1), (A2)
and (A3) hold. Then

S(A B) Mn
i 1 Si (A B)

is a strong fuzzy subsethood measure on X.

Proof.

(SF1) Since M satisfies (A2) we have S(A B) 1 if and only if

Si (A B) 1 if and only if A S B.
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(SF2) Since M satisfies (A1) we immediately have S(A B) 0 if and
only if Si (A B) 0 if and only if A 1 and B 0.

(SF3) If A B, then bearing in mind that M satisfies (A3) and Si (C A)

Si (C B) for all i 1 n , we have

S(C A) Mn
i 1 Si (C A) Mn

i 1 Si (C B) S(C B)

On the other hand, Si (A C) Si (B C). Therefore

S(A C) Mn
i 1 Si (A C) Mn

i 1 Si (B C) S(B C)

Since A S B implies that A B, the result follows.

Example 2. Let S1 Sn be n strong fuzzy subsethood measures on X
and let

M(x1 xn)
1

n

n�

i 1

xi

Then

S(A B)
n�

i 1

Si (A B)

is a strong fuzzy subsethood measure.

Example 3. Let S1 Sn, be n strong fuzzy subsethood measures on X
and let

M(x1 xn)

� n
i 1 xi� n

i 1 xi
� n
i 1 1 xi

The following expression is a strong fuzzy subsethood measure on X.

S(A B)

� n
i 1 Si (A B)

� n
i 1 Si (A B)

� n
i 1 Si (A B)

Proposition 3. Let S1 Sn be n strong fuzzy subsethood measures
on X and let M : [0 1]n [0 1] be such that it satisfies (A2), (A3) and
the property M(x1 xn) 0 if and only if min(x1 xn) 0. Then,

S(A B) Mn
i 1 Si (A B) is a strong fuzzy subsethood measure on X.
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Proof.

(SF1) Similar to the one for (SF1) in Proposition 2.
(SF2) If S(A B) 0, then Mn

i 1 Si (A B) 0. Therefore there exists at
least one Si (A B) 0, so A 1 and B 0.
On the other hand, if A 1 and B 0, then Si (A B) 0, so

S(A B) Mn
i 1 Si (A B) 0.

(SF3) Similar to the one done in (SF3) in Proposition 2.

Example 4. Let S1 Sn be n strong fuzzy subsethood measures on X.
Then

S(A B)
n�

i 1

Si (A B)

S(A B)
n�

i 1

Si (A B)

are strong fuzzy subsethood measures.

Proposition 4. Let S be a strong fuzzy subsethood measure on X. Then the
following items hold:

(i) S(A B) ( S(A B) S(Bc Ac)) is a strong fuzzy subsethood mea-
sure on X;

(ii) S(A B) S(A B) S(Bc Ac) is a strong fuzzy subsethood measure
on X.

Proof.

(i) (SF1) S(A B) 1 if and only if S(A B) S(Bc Ac) 1 if and
only if A S B.

(SF2) If S(A B) 0, then two things can happen.
i. S(A B) 0, then A 1 and B 0.
ii. S(Bc Ac) 0, therefore Bc 1 and Ac 0; that is, A 1

and B 0.
On the other hand, if A 1 and B 0, then S(A B) 0,
therefore S(A B) 0.

(SF3) If A B, then Ac Bc. We know that

S(A C) S(B C) S(Cc Ac) S(Cc Bc)
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so we arrive at the inequality

S(A C) ( S(A C) S(Cc Ac))

( S(B C) S(Cc Bc)) S(B C)

We also know

S(C A) S(C B) S(Ac Cc) S(Bc Cc)

So again we arrive at

S(C A) ( S(C A) S(Ac Cc))

( S(C B) S(Bc Cc)) S(C B)

(ii) Similar to the previous one.

5 CONSTRUCTION OF STRONG FUZZY SUBSETHOOD
MEASURES ON X

In this section we present two methods of constructing strong fuzzy subset-
hood measures on X . It is important to indicate that in reality the second one
is a particular case of the first one.

5.1 First construction method

Proposition 5. Let c be a strong negation such that c(e) e, M : [0 1]n

[0 1] be an aggregation function which satisfies (A1) and (A3S) and let the
functions g h : [0 1]2 [0 1] be such that

1. g(x y) h(x y) for all x y [0 1];
2. g(x y) h(x y) if and only if x 0 or y 1;
3. g(x y) 0 if and only if x 1 and y 0;

4. If x y, then

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

g(z x) g(z y)

g(y z) g(x z)

h(z y) h(z x)

h(x z) h(y z)
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In these conditions S : F(X ) F(X) [0 1] given by

S(A B)
Mn
i 1(g( A(xi ) B (xi )))

Mn
i 1(h( A(xi ) B (xi )))

is a strong fuzzy subsethood measure on X.

Proof. Under the hypothesis of this proposition it can never happen that
h( A(xi ) B(xi )) 0, since if this was true, then by (1) we see that
g( A(xi ) B(xi )) 0 and therefore, by (2), A(xi ) B(xi ) holds and by
(3) we have A(xi ) 1 and B(xi ) 0. That is, a contradiction.

(SF1) If it holds that S(A B) 1, then it follows that

Mn
i 1(g( A(xi ) B (xi ))) Mn

i 1(h( A(xi ) B(xi )))

By hypothesis we know that g(x y) h(x y). Since M satisfies
(A3S) we have that if there exists an xi such that g( A(xi ) B(xi ))
h( A(xi ) B(xi )), then

Mn
i 1(g( A(xi ) B (xi ))) Mn

i 1(h( A(xi ) B(xi )))

So, for all i 1 n we have that the identity g( A(xi ) B(xi ))
h( A(xi ) B(xi )) holds, and by (2) we have A(xi ) 0 or

B(xi ) 1, for all i 1 n . On the other hand, if A(xi )
0 or B(xi ) 1 for all i 1 n , then by (2) we know that
g( A(xi ) B(xi )) h( A(xi ) B(xi )), therefore S(A B) 1.

(SF2) and (SF3) follow from a straight calculation taking into account the
monotonicity of M ((A3)) and the properties demanded to g and h.

Example 5. Let the functions

g(x y) 1 x x y
4

h(x y)

�
1
4 if x 0 or y 1
1
2 otherwise

It is easy to see that these functions satisfy the conditions (1)-(4) of the propo-
sition above. If we take M(x1 xn)

1
n

� n
i 1 xi , which satisfies (A1) and
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(A3S), then

S(A B)
1
n

� n
i 1

1 A(xi ) A(xi ) B (xi )
4

1
n

� n
i 1

�
1
4 if A(xi ) 0 or B(xi ) 1
1
2 otherwise

is a strong fuzzy subsethood measure.

Corollary 2. In the conditions of Proposition 5, the following items hold.

(i) If M satisfies A4, then S(A B) S(s(A) s(B)) for all A B F(X)
and for any one-to-one mapping s : X X.

(ii) If g(x y) g(c(y) c(x)) and h(x y) h(c(y) c(x)) for all x y
[0 1], then S(A B) S(Bc Ac).

(iii) If g(x y) g(x c(y)) 1 for all x y [0 1] and

Mn
i 1(x1 xn) Mn

i 1(1 x1 1 xn) 1

then S(A B) S(A Bc) 1

Proof. It follows from a straight calculation.

Example 6. Let g(x y) (1 x y), h(x y) 1 and M(x1 xn)
1
n

� n
i 1 xi . Then

S(A B)
1

n

n�

i 1

(1 A(xi ) B(xi ))

is a strong fuzzy subsethood measure that satisfies Axioms (SD5),(SD6),
(SD10) and (SD12).

5.2 Second construction method
In this section we present constructions of strong fuzzy subsethood measures
using aggregation and implication functions. These constructions are a par-
ticular case of those of the previous section, it is enough to take h(x y) 1
in Proposition 5

Proposition 6. Let c be a strong negation and let S : F(X) F(X)
[0 1] given by:

S(A B) Mn
i 1(I ( A(xi ) B (xi )))
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for all A B F(X ), where M : [0 1]n [0 1] is a function that satisfies
(A1), (A2), (A3) and I is a function of [0 1]2 in [0 1] that satisfies (I1), (I2)
and

�
I (x y) 0 if and only if x 1 and y 0

I (x y) 1 if and only if x 0 or y 1
(2)

Then S is a strong fuzzy subsethood measure on X.

Proof.

(SF1) If

S(A B) 1

M(I ( A(x1) B(x1)) I ( A(xn) B(xn)))

then, since M satisfies (A2), we have that I ( A(xi ) B(xi )) 1 for
all i 1 n , so A(xi ) 0 or B(xi ) 1. If A(xi ) 0 or

B(xi ) 1 for all i 1 n , then I ( A(xi ) B(xi )) 1. Since
M satisfies (A2) then

1 M(I ( A(x1) B(x1)) I ( A(xn) B(xn))) S(A B)

(SF2) If S(A B) 0, then

0 M(I ( A(x1) B (x1)) I ( A(xn) B(xn)))

since M satisfies (A1) we have I ( A(xi ) B(xi )) 0 for all i
1 n , then A(xi ) 1 and B(xi ) 0 for all i 1 n .
If A(xi ) 1 for all i 1 n and B(xi ) 0, then we see that
I ( A(xi ) B(xi )) 0 bearing in mind that M satisfies (A1) we have

0 M(I ( A(x1) B(x1)) I ( A(xn) B(xn))) S(A B)

(SF3) If A B, then I ( A(xi ) C (xi )) I ( B (xi ) C (xi )) for all i
1 n , bearing in mind that M satisfies (A3) we have

S(A C) M(I ( A(x1) C (x1)) I ( A(xn) C (xn)))

M(I ( B(x1) C (x1)) I ( B(xn) C (xn)))

S(B C)
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If A B, then I ( C (xi ) A(xi )) I ( C (xi ) A(xi )) for all i
1 n , therefore

S(C A) M(I ( C (x1) A(x1)) I ( C (xn) A(xn)))

M(I ( C (x1) B(x1)) I ( C (xn) B(xn)))

S(C B)

In the following corollary we study the conditions under which strong
fuzzy subsethoods fulfill Axioms (SD5), (SD6), (SD10) and (SD12). The
other axioms have been studied in Corollary 1.

Corollary 3. In the same conditions as in Proposition 6, the following items
hold:

(i) If M satisfies A4, then S satisfies S(A B) S(s(A) s(B)) for all
A B F(X) and for every one-to-one mapping s : X X.

(ii) If I satisfies (I12), then S satisfies Axiom (SD6).
(iii) If M satisfies M(x1 xn) M(c(x1) c(xn)) 1 and I is an S-

implication, then S satisfies Axiom (SD10).
(iv) If M is idempotent and I satisfies (I10) and (I12), then S satisfies

Axiom (SD12).

Proof. It follows from a straight calculation.

5.3 Characterization of the strong fuzzy subsethood measures on X
with M fixed

Theorem 3. Let c be a strong negation and let S : F(X ) F(X) [0 1]
be given by

S(A B) Mn
i 1(I ( A(xi ) B (xi )))

for all A B F(X), with M : [0 1]n [0 1] a function that satisfies (A1),
(A2), (A3) and is idempotent and I a function from [0 1]2 to [0 1]. Then S

is a strong fuzzy subsethood measure on X that satisfies Axiom (SD6) and
the property S(1 A) M(A) if and only if I satisfies (I1), (I6), (I12) and
(I (x y) 1 if and only if x 0 or y 1).

Proof. (Sufficiency) By hypothesis I satisfies (I6) and (I12), so I also satis-
fies (I9) [6]. Moreover, since I satisfies (I1) and (I12), it also satisfies (I2). On
the other hand, as I satisfies (I2), (I6) and (I9), then I satisfies the property
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I (x y) 0 if and only if x 1 and y 0. In these conditions, by Proposi-
tion 6 we have that S is a strong fuzzy subsethood measure on X .
The rest of the demonstration a straight verification.

Corollary 4. In the same conditions as in the theorem above, S satisfies
Axiom (SD12).

Since we know [6] that if I : [0 1] [0 1] satisfies strict (I1), strict (I2),
(I7), (I9) and (I13), then I satisfies (2), in this section we are going to see
that from strict strong fuzzy subsethood measures we can construct fuzzy
entropies. We begin characterizing the strict strong fuzzy subsethood mea-
sures on X .

Theorem 4. Let c be a strong negation and let S : F(X ) F(X) [0 1]
be given by

S(A B) Mn
i 1(I ( A(xi ) B(xi )))

for all A B F(X ), where M : [0 1]n [0 1] is a function that satisfies
(A1), (A2), (A3S) and is idempotent and I is a function of [0 1]2 in [0 1] that
satisfies (I7) and (I13). In these conditions the following items are equivalent:

(i) S is a strict strong fuzzy subsethood measure on X that satisfies
Axiom (SD6) and S(1 A) M(A);

(ii) I satisfies strict (I1), strict (I2), (I6) and (I12);
(iii) There exists an automorphism of the unit interval such that

S(A B) Mn
i 1

�

c
�

1( ( A(xi )) (c( B(xi ))))
�
�

Proof. (i i i ) (i) The only point which is not trivial is (SF2). If S(A B)
0, then

Mn
i 1

�

c
�

1( ( A(xi )) (c( B(xi ))))
�
�

0

Since M satisfies (A1) we have

1( ( A(xi )) (c( B(xi )))) 1
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so ( A(xi )) (c( B(xi ))) 1, and therefore A(xi ) 1 and B(xi ) 0
for all i 1 n . The sufficiency is straight. The rest of the demonstra-
tion is straight

It is important to note that if in the conditions of the theorem above, if
c(x) 1(1 (x)) for all x [0 1], then

S(A B) Mn
i 1

1

�

1 ( A(xi )) ( A(xi )) ( B(xi ))

�

Corollary 5. The following items hold.

(i) Let c be a strong negation, f : [0 1]2 [0 1] a continuous strictly
increasing function and an automorphism of the unit interval. Then

S(A B) f 1

�
1

n

n�

i 1

f
�
c( 1( ( A(xi )) (c( B(xi )))))

�
�

is a continuous, strict, strong fuzzy subsethood measure on X that satis-
fies Axioms (SD6) and (SD12).

(ii) Let c be the standard negation, f : [0 1]2 [0 1] a continuous, strictly
increasing and convex function and an automorphism of the unit inter-
val. Then

S(A B) f 1

�
1

n

n�

i 1

f
�
1 1( ( A(xi )) (1 B(xi )))

�
�

is a continuous, strict, strong fuzzy subsethood measure on X and satis-
fies Axioms (SD6), (SD10) and (SD12).

(iii) Let c be the standard negation and let be an automorphism of the unit
interval such that (x) (y) 1 if and only if x y 1. Then

S(A B) 1

�
1

n

n�

i 1

1 ( A(xi ))(1 ( B(xi )))

�

is a continuous, strict strong fuzzy subsethood measure on X that satisfies
Axioms (SD6), (SD10) and (SD12).

Proof. It is straight.
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5.4 Characterization of the strong fuzzy subsethood measures on X
with I fixed

Theorem 5. Let c be a strong negation and let S : F(X ) F(X) [0 1]
be given by

S(A B) Mn
i 1(I ( A(xi ) B(xi )))

for all A B F(X), where M : [0 1]n [0 1] and I is a function from
[0 1]2 to [0 1] which satisfies (I1), (I2), (I6) and (2). In these conditions S

is a strong fuzzy subsethood measure on X such that S(1 A) M(A) if and
only if M satisfies (A1), (A2), (A3).

Proof. It is straight taking into account Proposition 6.

Example 7. If we take I (x y) (1 x y) and M(x1 xn)
1
n

� n
i 1 xi , then we have:

S(A B)
1

n

n�

i 1

(1 A(xi ) B(xi ))

If we take I (x y) 1 x x y and M(x1 xn)
1
n

� n
i 1 xi we have:

S(A B)
1

n

n�

i 1

1 A(xi ) A(xi ) B(xi )

6 CHARACTERIZATION OF THE STRONG INCLUSION OF
DUBOIS AND PRADE

In this section we present the characterization of the expression of Dubois
and Prade:

S(A B)
1

n

n�

i 1

(1 A(xi ) B (xi ))

from our constructions. It is necessary to point out that in 1980 Dubois and
Prade called this expression weak inclusion.
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Theorem 6. Let c be a strong negation and let S : F(X ) F(X) [0 1]
be given by

S(A B) Mn
i 1(I ( A(xi ) B (xi )))

for all A B F(X ), where M : [0 1]n [0 1] satisfies (A1), (A2), (A3)
and is idempotent and I is a function from [0 1]2 to [0 1]. In these conditions

S is a strong fuzzy subsethood measure on X such that it satisfies Axiom 6,

S(1 A) M(A) and if A k, then S(k c(k)) c(k).
if and only if

I satisfies (I1), (I6), (I12), I (x c(x)) c(x) for all x [0 1] and I (x y)
1 if and only if x 0 or y 1.

Proof. We know by Theorem 3 that if M : [0 1]n [0 1] is a function that
satisfies (A1), (A2), (A3) and is idempotent and I is a function of [0 1]2

in [0 1], then S is a strong fuzzy subsethood measure on X that satisfies
Axiom 6 and the property S(1 A) M(A) if and only if I satisfies (I1),
(I6), (I12) and (I (x y) 1 if and only if x 0 or y 1). So we only have
to prove the condition S(k c(k)) c(k).
(Necessity) If A k [0 1], then since M is idempotent we

have I (k c(k)) M(I (k c(k)) I (k c(k))) S(k c(k)) c(k). There-
fore for all x [0 1] we have I (x c(x)) c(x).
(Sufficiency) If I (x c(x)) c(x) for all x [0 1] we have that if we

take k [0 1] and A k, then since M is idempotent, S(k c(k))
M(I (k c(k)) I (k c(k))) M(c(k) c(k)) c(k).

Looking at the conditions that we demand from the functions I in the
theorem above and bearing in mind the well-known relations between the
different properties that can be demanded to implication operators ( [6]):
I satisfies (I1) and (I12), therefore it satisfies (I2). Since it satisfies (I6) and
(I12) it also satisfies (I9). Since it verifies (I9) and (I2) it satisfies (I3), since
it satisfies (I12) and (I3) it also satisfies (I4). Lastly, since it satisfies (I6) it
satisfies (I5). Therefore I is an implication in the sense of Fodor and Roubens,
that satisfies in addition (I6) and (I12).
In these conditions, if we impose on I to satisfy (I7) we know by [16, 24]

that I is an S-implication with an appropriate t-conorm and a strong negation
c. Since besides, we demand I to satisfy the condition I (x c(x)) c(x) for
all x [0 1], by Theorem 1.6 we have that the only S-implication that satis-
fies this property is I (x y) (c(x) y). All these considerations bring us to
the following corollary.
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Corollary 6. Let S : F(X ) F(X ) [0 1] be given by

S(A B) Mn
i 1(I ( A(xi ) B (xi )))

for all A B F(X ), where M : [0 1]n [0 1] is a function that satisfies
(A1), (A2), (A3) and is idempotent and I is a function of [0 1]2 in [0 1] that
satisfies (I7). In these conditions, S is a strong fuzzy subsethood measure on
X which satisfies Axiom (SD6), S(1 A) M(A) and the property (if A k,
then S(k c(k)) c(k)) if and only if I (x y) (1 x y).

Proof. We only need to bear in mind the theorem above and the fact that
I (x y) (1 x y) satisfies (I1), (I6), (I12), I (x c(x)) c(x) for all x
[0 1] and I (x y) 1 if and only if x 0 or y 1.

Remark 2.

1. If we take M(x1 xn)
1
n

� n
i 1 xi (obviously it satisfies (A1), (A2),

(A3) and is idempotent), the expression that we obtain in the conditions
of the corollary above is:

(A B) S(A B)
1

n

n�

i 1

(c( A(xi )) B(xi ))

If the negation considered is the standard, this expression is the one pre-
sented by Dubois and Prade in 1980 [11] with the name of weak inclu-
sion.

2. If in our constructions we use any R-implication as function I , it results
that the S constructed from M and I by Theorem 3 or Proposition 6,
does not fulfill the condition (SF1); that is, it does not fulfill

S(A B) 1 if and only if A S B

Therefore, it is not a strong fuzzy subsethood measure.
3. If I is a QL-implication, we know that in general these implications do

not satisfy the property (I1), therefore nothing can be said about the ful-
fillment of the condition (SF3) when we use our constructions. Fodor
studies in [15], the conditions under which the QL-implications satisfy
(I1). We leave for a near future the analysis of the way in which these
conditions influence our strong fuzzy subsethood measures.
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7 STRONG EQUALITY INDEXES

The concept of strong equality index can be defined as follows [7].

Definition 7. A mapping SE : X (X) [0 1] is a strong equality
index if:

(SE1) SE (A B) 1 if and only if A B with A B crisp sets;
(SE2) SE (A B) 0 if and only if A and B are complementary crisp sets;
(SE3) SE (A B) SE (B A) for every A B (X).

In [7] the following result is proved.

Corollary 7. Let M : [0 1]n [0 1] be a mapping that satisfies (A1) and
(A2). Let I : [0 1]2 [0 1] be such that (2) hold. Then, the mapping

SE : X (X) [0 1] given by

SE (A B) Mn
i 1( (I ( A(xi ) B(xi )) I ( B(xi ) A(xi ))))

is a strong equality index.

Note that

(I ( A(xi ) B(xi )) I ( B(xi ) A(xi )) E( A(xi ) B(xi )))

where E is the bi-implication related to I , see [18]. So if we take into account
this corollary and we bear in mind Theorem 5 we have immediately the fol-
lowing result.

Theorem 7. In the same conditions of Theorem 5, if M is such that

Mn
i 1( (xi yi )) (Mn

i 1xi M
n
i 1yi )

then it follows that the mapping SE : X (X ) [0 1] given by

SE (A B) ( S(A B) S(B A))

is a strong equality index.

Note that M satisfies the constraints of the previous theorem if
and only if M(x1 xn) min( f1(x1) fn(xn)), where the functions
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f1 fn : [0 1] [0 1] are increasing and satisfy, for each i
1 n , that fi (x) 0 if and only if x 0, and fi (x) 1 if and only
if x 1.

8 CONCLUDING REMARKS

In this work we have presented the concept of strong fuzzy subsethood mea-
sure taking into account the ideas of Dubois et al. for the inclusion between
fuzzy sets. This definition allows to defined strong equality between two
fuzzy sets, A and B as follows:

(A S B) if (A S B and B S A)

We have also linked this concept to that of strong equality index by means of
the use of appropriate aggregation functions and implication functions.
In the future we hope to connect this notion of strong subsethood with that

of overlap function and overlap index. Moreover, we think this concept could
find wide applicability in image processing to compare two or more images
or to detect objects in a given picture.

ACKNOWLEDGMENTS

D. Paternain was supported by project TIN2011-29520 of the Spanish Min-
istry of Science. H. Bustince, J. Fernandez and J. Sanz were supported
by project TIN2010-15055 of the Spanish Ministry of Science. R.Mesiar
was supported by grant VEGA 1/0171/12. This contribution has been
done also in connection with project IT4Innovations Centre of Excellence,
reg.No.CZ.1.05 /1.1.00 /02.0070 supported by the Research and Develop-
ment for Innovations Operational Programme financed by the Structural
Funds of the European Union and from the means of state budget of the
Czech Republic.

REFERENCES
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