Stainless steel structural sections possess several features that result in a significantly different response to that of equivalent carbon steel sections. To date these features have not been fully recognized in design codes, which have largely adapted rules devised for carbon steel in a rather simplistic fashion. Recently, a new approach for dealing with local buckling and the associated loss of effectiveness that does not utilize the concepts of either cross-sectional classification or effective cross-sectional properties has been developed for stainless steel and has also been applied to other nonlinear metallic materials. The method is based directly on the deformation capacities of cross sections and covers the behavior of stainless steel members subjected to flexural buckling and combined axial load plus bending. The proposed method has been verified using test results and its performance has been compared against the existing ASCE and Eurocode design guidance for structural stainless steel. Significantly improved and more consistent predictions have been obtained using the proposed method without any extra calculation effort.