Deakin University
Browse

File(s) under permanent embargo

Structure effect on the oxygen permeation properties of barium bismuth iron oxide membranes

journal contribution
posted on 2010-04-01, 00:00 authored by Jaka Sunarso, S Liu, J Diniz da Costa
In this work, we investigated the oxygen permeation properties of barium bismuth iron oxide within the family of [Ba2−3xBi3x−1][Fe2xBi1−2x]O2+3x/2 for x = 0.17–0.60. The structure changed progressively from cubic to tetragonal and then to hexagonal as function of x in accordance with the different relative amounts of bismuth on A-site and B-site of ABO3−δ perovskite lattices. We found that the oxygen flux and electrical conductivity correlated strongly, and it was prevalent for the cubic structure (x = 0.33–0.40) which conferred the highest oxygen flux of 0.59 ml min−1 cm−2 at 950 °C for a disk membrane x = 0.33 with a thickness of 1.2 mm. By reducing the thickness of the disk membrane to 0.8 mm, the oxygen flux increased to 0.77 ml min−1 cm−2, suggesting both surface kinetics and ion diffusion controlled oxygen flux, though the former was more prominent at higher temperatures. For disk membranes x = 0.45–0.60, the perovskite structure changed to tetragonal and hexagonal, and the oxygen flux was insignificant below 900 °C, clearly indicating electron conduction properties only. However, for two compositions with relatively high bismuth content, e.g. x = 0.55 and 0.60, there was a sudden and significant rise of oxygen permeability above 900 °C, by more than one order of magnitude. These materials changed conduction behavior from metallic to semiconductor at around 900 °C. These results suggest the advent of mixed ionic electronic conducting properties caused by the structure transition as bismuth ions changed their valence states to compensate for the oxygen vacancies formed within the perovskite lattices.

History

Journal

Journal of membrane science

Volume

351

Issue

1-2

Pagination

44 - 49

Publisher

Elsevier BV

Location

Amsterdam, The Netherlands

ISSN

0376-7388

eISSN

1873-3123

Language

eng

Publication classification

C1.1 Refereed article in a scholarly journal

Copyright notice

2010, Elsevier B.V.

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC