Deakin University
Browse

Structures and antifouling properties of polyvinyl chloride/poly(methyl methacrylate)-graft-poly(ethylene glycol) blend membranes formed in different coagulation media

Version 2 2024-06-05, 05:41
Version 1 2019-08-28, 08:22
journal contribution
posted on 2024-06-05, 05:41 authored by LF Fang, BK Zhu, LP Zhu, H Matsuyama, Shuaifei ZhaoShuaifei Zhao
© 2016 Two new amphiphilic copolymers poly(methyl methacrylate-graft-poly(ethylene glycol) methacrylate) (PMMA-g-PEG) are synthesized and blended into polyvinyl chloride (PVC) to prepare membranes in different coagulation media (water and ethanol) via the non-solvent induced phase separation method. The prepared membranes are characterized by X-ray photoelectron spectroscopy, proton nuclear magnetic resonance, scanning electron microscopy, atomic force microscopy and water contact angle measurement. Their separation performance and fouling resistance (by protein adsorption and foulant filtration) are also compared. It is found that the membrane hydrophilicity is significantly increased by blending amphiphilic copolymer due to the introduction of hydrophilic poly(ethylene glycol) (PEG) segments of the copolymer. The membranes formed in water have more desirable structures (i.e., smoother surfaces and higher porosity) and better performance (i.e., higher permeability and rejection to bovine serum albumin) compared with those formed in ethanol. The amphiphilic copolymer blended membranes formed in the water coagulation bath exhibit excellent antifouling properties, in particular, showing ~100% fouling reversibility. Therefore, blending amphiphilic copolymers and selecting water as the coagulation media can be effective strategies to develop high performance antifouling membranes.

History

Journal

Journal of Membrane Science

Volume

524

Pagination

235-244

Location

Amsterdam, The Netherlands

ISSN

0376-7388

eISSN

1873-3123

Language

eng

Publication classification

C1 Refereed article in a scholarly journal

Publisher

Elsevier

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC