System Design Perspective for Human-Level Agents Using Deep Reinforcement Learning: A Survey
Version 2 2024-06-06, 07:48Version 2 2024-06-06, 07:48
Version 1 2017-11-24, 00:00Version 1 2017-11-24, 00:00
journal contribution
posted on 2024-06-06, 07:48 authored by ND Nguyen, T Nguyen, S NahavandiSystem Design Perspective for Human-Level Agents Using Deep Reinforcement Learning: A Survey
History
Related Materials
- 1.
Location
Piscataway, N.J.Open access
- Yes
Link to full text
Language
EnglishPublication classification
C1 Refereed article in a scholarly journalCopyright notice
2017, IEEEJournal
IEEE AccessVolume
5Pagination
27091-27102ISSN
2169-3536eISSN
2169-3536Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INCUsage metrics
Keywords
Science & TechnologyTechnologyComputer Science, Information SystemsEngineering, Electrical & ElectronicTelecommunicationsComputer ScienceEngineeringDeep learninghuman-level agentsreinforcement learningroboticssurveysystem designNEURAL-NETWORKSALGORITHMSROBOTICS080105 Expert Systems970108 Expanding Knowledge in the Information and Computing SciencesCentre for Intelligent Systems Research4602 Artificial intelligence4611 Machine learning
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC

