- No file added yet -
Task complexity and location specific changes of cortical thickness in executive and salience networks after working memory training
Version 2 2024-06-05, 06:39Version 2 2024-06-05, 06:39
Version 1 2020-01-30, 13:51Version 1 2020-01-30, 13:51
journal contribution
posted on 2024-06-05, 06:39 authored by C Metzler-Baddeley, Karen CaeyenberghsKaren Caeyenberghs, S Foley, DK Jones© 2016 The Authors. Novel activities and experiences shape the brain's structure and organisation and, hence, our behaviour. However, evidence from structural plasticity studies remains mixed and the neural correlates of learning and practice are still poorly understood. We conducted a robustly designed study into grey matter plasticity following 2 months of working memory training. We generated a priori hypotheses regarding the location of plastic effects across three cognitive control networks (executive, anterior salience and basal ganglia networks), and compared the effects of adaptive training (n = 20) with a well-matched active control group (n = 20) which differed in training complexity and included extensive cognitive assessment before and after the training. Adaptive training relative to control activities resulted in a complex pattern of subtle and localised structural changes: Training was associated with increases in cortical thickness in right-lateralised executive regions, notably the right caudal middle frontal cortex, as well as increases in the volume of the left pallidum. In addition the training group showed reductions of thickness in the right insula, which were correlated with training-induced improvements in backward digit span performance. Unexpectedly, control activities were associated with reductions in thickness in the right pars triangularis. These results suggest that the direction of activity-induced plastic changes depend on the level of training complexity as well as brain location. These observations are consistent with the view that the brain responds dynamically to environmental demands by focusing resources on task relevant networks and eliminating irrelevant processing for the purpose of energy reduction.
History
Journal
NeuroImageVolume
130Pagination
48-62Location
Amsterdam, The NetherlandsPublisher DOI
Open access
- Yes
Link to full text
ISSN
1053-8119eISSN
1095-9572Language
engPublication classification
C1 Refereed article in a scholarly journalPublisher
ElsevierUsage metrics
Categories
No categories selectedKeywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC