Text-dependent speaker recognition using wavelets and neural networks
journal contribution
posted on 2007-04-01, 00:00authored byChee Peng Lim, S Woo
An intelligent system for text-dependent speaker recognition is proposed in this paper. The system consists of a wavelet-based module as the feature extractor of speech signals and a neural-network-based module as the signal classifier. The Daubechies wavelet is employed to filter and compress the speech signals. The fuzzy ARTMAP (FAM) neural network is used to classify the processed signals. A series of experiments on text-dependent gender and speaker recognition are conducted to assess the effectiveness of the proposed system using a collection of vowel signals from 100 speakers. A variety of operating strategies for improving the FAM performance are examined and compared. The experimental results are analyzed and discussed.