Deakin University
Browse
1-s2.0-S1361841524001555-main.pdf (8.81 MB)

The STOIC2021 COVID-19 AI challenge: Applying reusable training methodologies to private data

Download (8.81 MB)
Version 2 2024-06-07, 00:31
Version 1 2024-06-06, 23:52
journal contribution
posted on 2024-06-07, 00:31 authored by Luuk H Boulogne, Julian Lorenz, Daniel Kienzle, Robin Schön, Katja Ludwig, Rainer Lienhart, Simon Jégou, Guang Li, Cong Chen, Qi Wang, Derik Shi, Mayug Maniparambil, Dominik Müller, Silvan Mertes, Niklas Schröter, Fabio Hellmann, Miriam Elia, Ine Dirks, Matías Nicolás Bossa, Abel Díaz Berenguer, Tanmoy Mukherjee, Jef Vandemeulebroucke, Hichem Sahli, Nikos Deligiannis, Panagiotis Gonidakis, Ngoc Dung Huynh, Imran Razzak, Mohamed Reda BouadjenekMohamed Reda Bouadjenek, Mario Verdicchio, Pasquale Borrelli, Marco Aiello, James A Meakin, Alexander Lemm, Christoph Russ, Razvan Ionasec, Nikos Paragios, Bram van Ginneken, Marie-Pierre Revel-Dubois
The STOIC2021 COVID-19 AI challenge: Applying reusable training methodologies to private data

History

Journal

Medical Image Analysis

Article number

103230

Pagination

103230-103230

Open access

  • Yes

ISSN

1361-8415

Language

en

Publisher

Elsevier BV

Usage metrics

    Research Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC