The difference in neuromuscular fatigue and workload during competition and training in elite cricketers
Version 2 2024-06-05, 04:58Version 2 2024-06-05, 04:58
Version 1 2019-07-29, 10:33Version 1 2019-07-29, 10:33
journal contribution
posted on 2024-06-05, 04:58authored byK Cooke, T Outram, R Brandon, M Waldron, W Vickery, J Keenan, J Tallent
Purpose: First, to assess changes in neuromuscular function via alterations in countermovement-jump strategy after training and 2 forms of competition and second, to compare the relationship between workloads and fatigue in seam bowlers and nonseam bowlers. Methods: Twenty-two professional cricketers’ neuromuscular function was assessed at baseline, immediately post and +24 h posttraining, and after multiday and 1-day cricket events. In addition, perceptual (rating of perceived exertion [RPE] and soreness) measures and external loads (PlayerLoad™, number of sprints, total distance, and overs) were monitored across all formats. Results: Seam bowlers covered more distance, completed more sprints, and had a higher RPE in training (P < .05), without any difference in soreness compared with nonseam bowlers. Compared with seam bowlers, the nonseam bowlers’ peak force decreased post-24 h compared with baseline only in 1-d cricket (95% CI, 2.1–110.0 N; P < .04). There were no pre–post training or match differences in jump height or alterations in jump strategy (P > .05). Seam bowlers increased their peak jumping force from baseline to immediately posttraining or game (95% CI, 28.8–132.4 N; P < .01) but decreased between postcricket to +24 h (95% CI, 48.89–148.0 N; P < .001). Conclusion: Seam bowlers were more accustomed to high workloads than nonseamers and thus more fatigue resistant. Changes in jump height or strategy do not appear to be effective methods of assessing fatigue in professional crickets. More common metrics such as peak force are more sensitive.
History
Journal
International journal of sports physiology and performance