Deakin University
Browse

The effect of diesel emission exposure on primary human bronchial epithelial cells from a COPD cohort: N-acetylcysteine as a potential protective intervention

journal contribution
posted on 2019-03-01, 00:00 authored by Annalicia Vaughan, Svetlana StevanovicSvetlana Stevanovic, Mohammad Jafari, Mostafizur Rahman, Rayleen V Bowman, Kwun M Fong, Zoran Ristovski, Ian A Yang
INTRODUCTION: Chronic obstructive pulmonary disease (COPD) will be the third leading cause of death world-wide by 2020. Prolonged exposure to particulate matter is associated with COPD progression and mortality. Diesel emissions are a major contributor to particulate matter pollution. In this study we test a therapeutic antioxidant, N-acetylcysteine (NAC), for its ability to protect bronchial epithelial cells (pHBECs) from patients with COPD from adverse effects of diesel emission exposure. METHODS: pHBECs from patients with or without COPD were cultured at air-liquid interface (ALI). Cells were exposed to diesel emissions for 30 min with or without 3-h post-exposure treatment with 5 mM N-acetylcysteine (NAC). Filtered laboratory air was tested as a negative control. Cell responses (cell viability, inflammation and oxidative stress) and gene expression profiles for intracellular and immune signaling were assessed. RESULTS: Diesel emissions exposure increased IL-8 secretion and production, antioxidant production, and cytochrome P450 1a1 (CYP1a1) mRNA expression and suppressed superoxide dismutase-1 (SOD1) mRNA expression in bronchial epithelial cells from COPD patients. Treatment with N-acetyl cysteine attenuated the suppression of SOD1. Nanostring gene expression profiling of the filtered air controls showed COPD epithelial cells have increased expression of MHC class II and an interferon signaling profile. CONCLUSIONS: This study indicates that bronchial epithelial cells from COPD patients may be vulnerable to diesel emission exposure due to reduced antioxidant capacity, and elevated CYP1a1 mRNA expression. NAC did not appear to offer protection. Future research will be needed to explore other means of recovering oxidant capacity in COPD airways.

History

Journal

Environmental research

Volume

170

Pagination

194-202

Location

Amsterdam, The Netherlands

ISSN

0013-9351

eISSN

1096-0953

Language

eng

Publication classification

C1.1 Refereed article in a scholarly journal

Copyright notice

2018, Elsevier Inc.

Publisher

Elsevier

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC