File(s) under permanent embargo

The effect of treatment time on the ionic liquid surface film formation: promising surface coating for Mg alloy AZ31

journal contribution
posted on 25.06.2016, 00:00 authored by Yafei Zhang, X Liu, S S Jamal, Bruce HintonBruce Hinton, S E Moulton, G G Wallace, Maria ForsythMaria Forsyth
Mg alloys are attractive materials for medical devices. The main limitation is that they are prone to corrosion. A low toxicity surface coating that enables uniform, controlled corrosion at a desired rate (this usually means it must offer barrier functions for a limited time period) is desirable. Phosphate-based ionic liquids (ILs) are known to induce a coating that can reduce the corrosion rate of Mg alloys, Furthermore, some ILs are known to be biocompatible and therefore, controlling the corrosion behaviour of an Mg alloy and its surface biocompatibility can be achieved through adding an appropriate low toxic IL surface layer to the substrate. In this study, we have evaluated the cytotoxicity of three phosphate-based ILs to primary human coronary artery endothelial cells. Among them, tributyl(methyl)-phosphonium diphenylphosphate (P1,4,4,4dpp) shows the lowest cytotoxicity. Therefore, further work was aimed at developing an appropriate treatment method to produce a homogeneous and passive surface coating based on P1,4,4,4dpp IL, with the focus on investigating the effect of treatment time. The results showed that that the formation of IL coating on AZ31 has proceeded progressively, and treatment time plays an important role. An IL treatment at 100 °C with an extended treatment time of 5 h significantly enhanced corrosion resistance of the AZ31 alloy in simulated body fluid. Additionally, the corrosion morphology was uniform and there was no evidence of "localized pitting corrosion" observed. Such a performance makes this ionic liquid coating as a potential surface coating biodegradable Mg-based implants.

History

Journal

Surface and coatings technology

Volume

296

Pagination

192 - 202

Publisher

Elsevier

Location

Amsterdam, The Netherlands

ISSN

0257-8972

Language

eng

Publication classification

C Journal article; C1 Refereed article in a scholarly journal

Copyright notice

2016, Elsevier