Applications for magnesium powders have generally been restricted to the area of pyrotechnology, but with improved safety measures and novel processing technologies there are now more opportunities opening up for magnesium powder metallurgy components. Conventional powder metallurgy involving liquid phase sintering may not be a viable option, however due to the high reactivity of molten magnesium in air Solid-state consolidation processes are therefore desirable, with direct powder extrusion and equal channel angular pressing (ECAP) offering real alternatives to the conventional press/sinter routes. With this move toward purely solid-state metallurgy come opportunities for alternative alloy design strategies, potentially leading to microstructures not readily achieved through traditional casting routes. This paper will discuss the suitability of the ECAP route for magnesium powder compaction and explore the novel alloying strategies that become available with the success of these solid-state powder metallurgical processes.