Deakin University
Browse

File(s) under permanent embargo

The influence of interfacial interactions on the conductivity and phase behaviour of organic ionic plastic crystal/polymer nanoparticle composite electrolytes

journal contribution
posted on 2020-01-01, 00:00 authored by Frederick Nti, L Porcarelli, Wren Greene, Haijin Zhu, F Makhlooghiazad, D Mecerreyes, Patrick HowlettPatrick Howlett, Maria ForsythMaria Forsyth, Xiaoen Wang
Organic ionic plastic crystals (OIPCs) have been recognised as promising solid-state electrolyte materials for next-generation energy storage devices. Recently, the addition of polymer nanofillers to OIPCs has led to the design of OIPC-based solid-state electrolytes with enhanced mechanical stability and ion conductivity. However, the mechanisms of ion conductivity enhancement and the influence of different polymer surface chemistries on the ion dynamics are not yet well understood, which has hindered the further development of high-performance OIPC-based electrolytes. In this work, we selected two different polymer nanoparticles, poly(vinylidene fluoride) (PVDF) and polystyrene (PS), and investigated the effects of the polymer surfaces on the thermal behaviour and ion transport properties of the OIPC, N-ethyl N-methyl pyrrolidinium bis(fluorosulfonyl)imide ([C2mpyr][FSI]). We found significantly different thermal behaviours, as well as ion transport properties in the OIPC/nanoparticle composites. Specifically, compared with pure [C2mpyr][FSI], the addition of PVDF nanoparticles effectively enhanced the ion conductivity of the OIPC composite, with the optimum achieved near the percolation threshold of PVDF nanoparticles. In contrast, the addition of PS nanoparticles to the OIPC led to a slight enhancement at low concentrations and then a significant decrease in conductivity at higher concentrations. DSC, FTIR and EIS confirm that the interaction between the PVDF nanoparticles and the OIPC induces the formation of less ordered OIPC layers on the PVDF surfaces, leading to the conductivity enhancement. Finally, different structure models based on the results of this work are proposed, which provide principle guidelines for the design of future OIPC-based highly conductive electrolyte materials.

History

Journal

Journal of materials chemistry A

Volume

8

Issue

10

Pagination

5350 - 5362

Publisher

Royal Society of Chemistry

Location

Cambridge, Eng.

ISSN

2050-7488

eISSN

2050-7496

Language

eng

Publication classification

C1 Refereed article in a scholarly journal

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC