File(s) under permanent embargo
The role of unbound oligomers in the nucleation and growth of electrodeposited polypyrrole and method for preparing high strength, high conductivity films
journal contribution
posted on 2012-01-01, 00:00 authored by W Zheng, Joselito RazalJoselito Razal, G Spinks, V T Truong, P Whitten, G WallacePolypyrrole is a material with immensely useful properties suitable for a wide range of electrochemical applications, but its development has been hindered by cumbersome manufacturing processes. Here we show that a simple modification to the standard electrochemical polymerization method produces polypyrrole films of equivalently high conductivity and superior mechanical properties in one-tenth of the polymerization time. Preparing the film as a series of electrodeposited layers with thorough solvent washing between layering was found to produce excellent quality films even when layer deposition was accelerated by high current. The washing step between the sequentially polymerized layers altered the deposition mechanism, eliminating the typical dendritic growth and generating nonporous deposits. Solvent washing was shown to reduce the concentration of oligomeric species in the near-electrode region and hinder the three-dimensional growth mechanism that occurs by deposition of secondary particles from solution. As artificial muscles, the high density sequentially polymerized films produced the highest mechanical work output yet reported for polypyrrole actuators.
History
Journal
LangmuirVolume
28Issue
29Pagination
10891 - 10897Publisher
American Chemical SocietyLocation
Washington, DCPublisher DOI
ISSN
0743-7463Language
engPublication classification
C1.1 Refereed article in a scholarly journalUsage metrics
Read the peer-reviewed publication
Categories
Keywords
Unbound OligomersElectrodeposited polypyrroleHigh conductivity filmsScience & TechnologyPhysical SciencesTechnologyChemistry, MultidisciplinaryChemistry, PhysicalMaterials Science, MultidisciplinaryChemistryMaterials ScienceCONJUGATED POLYMER ACTUATORSORIENTED PYROLYTIC-GRAPHITEELECTROCHEMICAL POLYMERIZATIONMECHANICAL-PROPERTIESELECTROPOLYMERIZED POLYPYRROLEMORPHOLOGYPYRROLEELECTROSYNTHESISTEMPERATURETRANSITION