Deakin University
Browse

File(s) under permanent embargo

The use of injury surveillance databases to identify emerging injury hazards

journal contribution
posted on 2005-03-01, 00:00 authored by Mark StokesMark Stokes, P van Leeuwen, J Ozanne-Smith
Among the many valuable uses of injury surveillance is the potential to alert health authorities and societies in general to emerging injury trends, facilitating earlier development of prevention measures. Other than road safety, to date, few attempts to forecast injury data have been made, although forecasts have been made of other public health issues. This may in part be due to the complex pattern of variance displayed by injury data. The profile of many injury types displays seasonality and diurnal variance, as well as stochastic variance. The authors undertook development of a simple model to forecast injury into the near term. In recognition of the large numbers of possible predictions, the variable nature of injury profiles and the diversity of dependent variables, it became apparent that manual forecasting was impractical. Therefore, it was decided to evaluate a commercially available forecasting software package for prediction accuracy against actual data for a set of predictions. Injury data for a 4-year period (1996 to 1999) were extracted from the Victorian Emergency Minimum Dataset and were used to develop forecasts for the year 2000, for which data was also held. The forecasts for 2000 were compared to the actual data for 2000 by independent t-tests, and the standard errors of the predictions were modelled by stepwise hierarchical multiple regression using the independent variables of the standard deviation, seasonality, mean monthly frequency and slope of the base data (R = 0.93, R2 = 0.86, F(3, 27) = 55.2, p < 0.0001). Significant contributions to the model included the SD (β = 1.60, p < 0.001), mean monthly frequency (β =  - 0.72, p < 0.002), and the seasonality of the data (β = 0.16, p < 0.02). It was concluded that injury data could be reliably forecast and that commercial software was adequate for the task. Variance in the data was found to be the most important determinant of prediction accuracy. Importantly, automated forecasting may provide a vehicle for identifying emerging trends.

History

Journal

Injury control and safety promotion

Volume

12

Issue

1

Pagination

1 - 7

Publisher

Taylor & Francis The Netherlands

Location

Lisse, Netherlands

ISSN

1745-7300

Language

eng

Notes

Online Publication Date: 01 March 2005

Publication classification

C1 Refereed article in a scholarly journal

Copyright notice

2005, Taylor & Francis Group Ltd

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC