Version 2 2024-06-04, 13:45Version 2 2024-06-04, 13:45
Version 1 2019-06-25, 22:39Version 1 2019-06-25, 22:39
journal contribution
posted on 2024-06-04, 13:45authored byM Wall, A Subramani, Luke ChongLuke Chong, R Galindo, A Turpin, RH Kardon, MJ Thurtell, JA Bailey, I Marin-Franch
Purpose: To characterize visual loss across the full visual field in idiopathic intracranial hypertension (IIH) patients with mild central visual loss. Methods: We tested the full visual field (50° nasal, 80° temporal, 30° superior, 45° inferior) of 1 eye of 39 IIH patients by using static perimetry (size V) with the Open Perimetry Interface. Participants met the Dandy criteria for IIH and had at least Frisén grade 1 papilledema with better than -5 dB mean deviation (MD) centrally. Two observers (MW and AS) evaluated the visual field defects, adjudicated any differences, and reviewed optical coherence tomography data. Results: We found a greater MD loss peripherally than centrally (central 26°). The median MD (and corresponding median absolute deviations) was -1.37 dB (1.61 dB) for the periphery and -0.77 dB (0.87 dB) for the central 26°, P < 0.001. There were about 30% more abnormal test locations identified in the periphery (P = 0.12), and the mean defect depth increased with eccentricity (P < 0.001). The most frequent defect found was a temporal wedge (23% of cases) in the periphery with another 23% that included this sector with inferior temporal loss. Although the presence of papilledema limited correlation, 55% of the temporal wedge defects had optical coherence tomography retinal nerve fiber layer deficits in the corresponding superonasal location. Other common visual field defects were inferonasal loss, superonasal loss, and superior and inferior arcuate defects. Seven patients (18%) had visual field defects in the periphery with normal central visual field testing. Conclusion: In IIH patients, we found substantial visual loss both outside 30° of the visual field and inside 30° with the depth of the defect increasing linearly with eccentricity. Temporal wedge defects were the most common visual field defect in the periphery. Static threshold perimetry of the full visual field appears to be clinically useful in IIH patients.