Deakin University
Browse
byrne-timeofdaydifferences-2017.pdf (310.71 kB)

Time of day differences in neural reward functioning in healthy young men

Download (310.71 kB)
journal contribution
posted on 2017-09-01, 00:00 authored by Jamie ByrneJamie Byrne, M E Hughes, S L Rossell, S L Johnson, G Murray
Reward function appears to be modulated by the circadian system, but little is known about the neural basis of this interaction. Previous research suggests that the neural reward response may be different in the afternoon; however, the direction of this effect is contentious. Reward response may follow the diurnal rhythm in self-reported positive affect, peaking in the early afternoon. An alternative is that daily reward response represents a type of prediction error, with neural reward activation relatively high at times of day when rewards are unexpected (i.e., early and late in the day). The present study measured neural reward activation in the context of a validated reward task at 10.00 h, 14.00 h, and 19.00 h in healthy human males. A region of interest BOLD fMRI protocol was used to investigate the diurnal waveform of activation in reward-related brain regions. Multilevel modeling found, as expected, a highly significant quadratic time-of-day effect focusing on the left putamen (p <0.001). Consistent with the “prediction error” hypothesis, activation was significantly higher at 10.00 h and 19.00 h compared with 14.00 h. It is provisionally concluded that the putamen may be particularly important in endogenous priming of reward motivation at different times of day, with the pattern of activation consistent with circadian-modulated reward expectancies in neural pathways (i.e., greater activation to reward stimuli at unexpected times of day). This study encourages further research into circadian modulation of reward and underscores the methodological importance of accounting for time of day in fMRI protocols.

History

Journal

Journal of Neuroscience

Volume

37

Issue

37

Pagination

8895 - 8900

Publisher

Society for Neuroscience

Location

Washington, D.C.

ISSN

0270-6474

eISSN

1529-2401

Language

eng

Publication classification

C1 Refereed article in a scholarly journal

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC