Deakin University
Browse

File(s) under embargo

Toward domain adaptation with open-set target data: Review of theory and computer vision applications

journal contribution
posted on 2023-10-02, 23:18 authored by R Ghaffari, MS Helfroush, Abbas KhosraviAbbas Khosravi, K Kazemi, H Danyali, L Rutkowski
Open-set domain adaptation is a developing and practical solution to training deep networks using unlabeled data which have been collected among unknown data and are under domain shift with other labeled data. This scenario transfers knowledge from a source domain enriched with labeled data to the unlabeled target domain, meanwhile, unknown target samples which are not present in the source domain are separated. Existing methods aim to bridge the domain gap of shared classes between source and target domains in a trustworthy manner and avoid negative transfer learning using keeping away unknown data from the domain alignment step. In this review article, we present a unified framework of theory advances for network risk and a new categorization of open-set domain adaptation along with listing evaluation metrics and popular datasets. Then we accentuate challenges and gaps in existing studies to organize a road map for future research using detailed analysis of investigations. To bring things full circle, we also point out different assumptions and outlooks in the settings of this research area.

History

Journal

Information Fusion

Volume

100

Article number

ARTN 101912

Location

Amsterdam, The Netherlands

ISSN

1566-2535

eISSN

1872-6305

Language

English

Publisher

ELSEVIER