This paper presents a framework for justifying generalization in information systems (IS) research. First, using evidence from an analysis of two leading IS journals, we show that the treatment of generalization in many empirical papers in leading IS research journals is unsatisfactory. Many quantitative studies need clearer definition of populations and more discussion of the extent to which ‘significant’ statistics and use of non-probability sampling affect support for their knowledge claims. Many qualitative studies need more discussion of boundary conditions for their sample-based general knowledge claims. Second, the proposed new framework is presented. It defines eight alternative logical pathways for justifying generalizations in IS research. Three key concepts underpinning the framework are the need for researcher judgment when making any claim about the likely truth of sample-based knowledge claims in other settings; the importance of sample representativeness and its assessment in terms of the knowledge claim of interest; and the desirability of integrating a study’s general knowledge claims with those from prior research. Finally, we show how the framework may be applied by researchers and reviewers. Observing the pathways in the framework has potential to improve both research rigour and practical relevance for IS research.
History
Journal
European journal of information systems
Volume
21
Pagination
6 - 21
Location
Basingstoke, England
ISSN
0960-085X
eISSN
1476-9344
Language
eng
Publication classification
C1 Refereed article in a scholarly journal
Copyright notice
2011, Operational Research Society Ltd. All rights reserved