Deakin University
Browse

File(s) under permanent embargo

Tractable Resource Management With Uplink Decoupled Millimeter-Wave Overlay in Ultra-Dense Cellular Networks

journal contribution
posted on 2016-06-01, 00:00 authored by Jihong ParkJihong Park, Seong-Lyun Kim, Jens Zander
© 2016 IEEE. The forthcoming 5G cellular network is expected to overlay millimeter-wave (mmW) transmissions with the incumbent micro-wave (μW) architecture. The overall mm-μW resource management should, therefore, harmonize with each other. This paper aims at maximizing the overall downlink (DL) rate with a minimum uplink (UL) rate constraint, and concludes: mmW tends to focus more on DL transmissions while μW has high priority for complementing UL, under time-division duplex (TDD) mmW operations. Such UL dedication of μW results from the limited use of mmW UL bandwidth due to excessive power consumption and/or high peak-to-average power ratio (PAPR) at mobile users. To further relieve this UL bottleneck, we propose mmW UL decoupling that allows each legacy μW base station (BS) to receive mmW signals. Its impact on mm-μW resource management is provided in a tractable way by virtue of a novel closed-form mm-μW spectral efficiency (SE) derivation. In an ultra-dense cellular network (UDN), our derivation verifies mmW (or μW) SE is a logarithmic function of BS-to-user density ratio. This strikingly simple yet practically valid analysis is enabled by exploiting stochastic geometry in conjunction with real three-dimensional (3-D) building blockage statistics in Seoul, South Korea.

History

Journal

IEEE Transactions on Wireless Communications

Volume

15

Pagination

4362-4379

Location

Piscataway, N.J.

ISSN

1536-1276

eISSN

1558-2248

Language

eng

Publication classification

C1.1 Refereed article in a scholarly journal

Issue

6

Publisher

Institute of Electrical and Electronics Engineers