Deakin University
Browse

File(s) under permanent embargo

Transesterification of fish oil to produce fatty acid ethyl esters using ultrasonic energy

journal contribution
posted on 2007-11-01, 00:00 authored by R Armenta, M Vinatoru, A Burja, J Kralovec, Colin BarrowColin Barrow
This study evaluated the production of fatty acid ethyl esters from fish oil using ultrasonic energy and alkaline catalysts dissolved in ethanol. The feasibility of fatty acid ethyl ester production was determined using an ultrasonic bath and probe, and between 0.5 and 1% KOH (added to the fish oil). Furthermore, factors such as ultrasonic device (bath and probe), catalyst (KOH and C2H5ONa), temperature (20 and 60 °C), and duration of exposure (10–90 min) were assessed. Sodium ethoxide was found to be a more efficient catalyst than KOH when transesterifying fish oil. Ultrasonic energy applied for greater than 30 min at 60 °C using 0.8% of C2H5ONa as a catalyst transesterified over 98% fish oil triglycerides to fatty acid ethyl esters. It is reasonable to conclude that the yield of fatty acid ethyl esters produced by applying ultrasonic energy to fish oil is related to the sonication time. Due to increases in the surface area contact between the reactants and the catalyst, ultrasonic energy has the potential to reduce the production time required by a conventional large-scale commercial transesterification method that uses agitation as a way of mixing.

History

Journal

Journal of the American Oil Chemists' Society

Volume

84

Issue

11

Pagination

1045 - 1052

Publisher

American Oil Chemists' Society

Location

Champaign, Ill.

ISSN

0003-021X

eISSN

1558-9331

Language

eng

Publication classification

C1.1 Refereed article in a scholarly journal

Copyright notice

2007, Springer

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC