Deakin University
Browse

Tunable Water Delivery in Carbon-Coated Fabrics for High-Efficiency Solar Vapor Generation

Version 2 2024-06-05, 10:10
Version 1 2020-01-30, 14:43
journal contribution
posted on 2024-06-05, 10:10 authored by Y Li, X Jin, Y Zheng, W Li, F Zheng, W Wang, T Lin, Z Zhu
Copyright © 2019 American Chemical Society. Solar vapor generation by localized heating and evaporation has potential to be a viable and "green" way to produce fresh water. This work reports a carbon black-coated cotton fabric with a tunable water delivery property for high-efficiency solar vapor generation under 1 sun. The fabric is prepared by an electrospray of poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) on one-side of the fabric followed by dip-coating of the fabric with carbon black as a photothermal absorber. Depending on the duration of electrospray, the roughness gradient generated by the PVDF-HFP layer in the fabric leads to guided and continuous one-way water transport from the electrosprayed hydrophobic side to the hydrophilic side with a tunable delivery rate. The tunable water delivery capability of the fabric regulates the amount of water supplied to the vicinity of the photothermal absorber. Additionally, the fabric shows excellent broadband absorption and low thermal conductivity. In comparison with the carbon black-coated fabric without a roughness gradient, the regulation of water improves the solar vapor conversion efficiency, owing to reduced heat loss and better heat allocation. Under optimal conditions, a solar vapor conversion efficiency of 88.9% and a stable water evaporation rate of 1.33 kg (m2·h)-1 under 1 sun are achieved.

History

Journal

ACS Applied Materials and Interfaces

Volume

11

Pagination

46938-46946

Location

Washington, D.C.

ISSN

1944-8244

eISSN

1944-8252

Language

eng

Publication classification

C1 Refereed article in a scholarly journal

Issue

50

Publisher

ACS Publications

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC