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ABSTRACT Social and political policy, human activities, and environmental change

affect the ways in which microbial communities assemble and interact with people.

These factors determine how different social groups are exposed to beneficial and/

or harmful microorganisms, meaning microbial exposure has an important socioe-

cological justice context. Therefore, greater consideration of microbial exposure

and social equity in research, planning, and policy is imperative. Here, we identify

20 research questions considered fundamentally important to promoting equitable

exposure to beneficial microorganisms, along with safeguarding resilient societies

and ecosystems. The 20 research questions we identified span seven broad themes,

including the following: (i) sociocultural interactions; (ii) Indigenous community
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health and well-being; (iii) humans, urban ecosystems, and environmental proc-
esses; (iv) human psychology and mental health; (v) microbiomes and infectious
diseases; (vi) human health and food security; and (vii) microbiome-related plan-
ning, policy, and outreach. Our goal was to summarize this growing field and to
stimulate impactful research avenues while providing focus for funders and
policymakers.

KEYWORDS microbiomes, biopolitics, health disparities, social determinants of health,
structural determinants of health, integrated research, structural determinants

Rapid advances in DNA sequencing and bioinformatics have dramatically
increased our ability to study the function, assembly, and complexity of micro-

bial communities. This explosion in microbial research has revealed important
insights into how microorganisms influence the functionality and resilience of
ecosystems, along with human and nonhuman health. Indeed, microorganisms,
including bacteria, archaea, algae, fungi, and protozoans, along with viruses, have
key roles in maintaining favorable human health, but they are also fundamental
to many diseases. Microorganisms are foundational to our ecosystems and con-
tribute toward the provisioning and regulating “services” which we depend upon
for survival. Moreover, recent work suggests that we need to consider microbial
components of social equity and ecological (in)justice. Formed in 2020, the
Microbes and Social Equity (MSE) working group collaborates on research, curric-
ula, policy, and practice related to microbiomes and our interactions with them
(Fig. 1) (1, 2).

With an overwhelming number of potential research avenues and agendas in
this emerging field, it is prudent to identify important, impactful research ques-
tions and priorities to enable timely and considerate progress in the field. In this
article, we present the results of an international workshop hosted by the MSE
working group in late 2020. The workshop participants used an established discus-
sion and voting-based research method to identify 20 important research ques-
tions in microbial exposure and social equity (3, 4). Similar workshops have been
carried out in microbial ecology (3), conservation biology (4), and sustainability (5)
and are directly applicable to the development of research and socioecological
policy.

FIG 1 A systems-level view of microbiomes, hosts, societies, and ecosystems, and strategies to meld
social equity with biology, ecology, politics, or design (made with biorender).
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METHODS
Participants. Our methods were based on those of Antwis et al. (3), which were

inspired by those of Sutherland et al. (4) (Fig. 2). In brief, the MSE working group held a
virtual workshop on the Zoom virtual conferencing platform in October 2020 and
again in November 2020. Invitations to participate were distributed to all members of
the MSE working group by e-mail. To increase diversity and rigor, all members were
requested to invite one or two other experts from across different disciplines to con-
tribute to the paper. Representing both research and practice, different nationalities,
cultural groups (including Indigenous scholars), and genders, a total of 22 participants
from 18 institutions around the globe made important contributions to the develop-
ment of the 20 questions presented in this paper. All contributors are listed as authors.

Questions and themes. Prior to the two virtual workshops, all participants were
asked to submit approximately 10 questions—via a digital form—that they thought
most closely aligned with the following paraphrased brief from Antwis et al. (page 2 of
reference 3):

“We are aiming to identify 20 questions that, if answered, will make a considerable
difference to the research area of Microbes and Social Equity. These should be
questions that are unanswered, could be answered, and could be tackled by a
research programme. This is expected to set the agenda for future research in the
area of Microbes and Social Equity”.

Participants were asked to anonymize their questions throughout the workshop
stages, as well as to diversify the themes of the questions, aiming for 10 questions in
total: 50% from within their discipline and 50% outside their discipline. A total of 170
questions were submitted by participants, duplicate questions were removed, and
questions were subsequently coded into the following broad themes:

I. Sociocultural interactions
II. Indigenous community health and well-being
III. Humans, urban ecosystems, and environmental processes
IV. Human psychology and mental health
V. The microbiome and infectious diseases
VI. Human health and food security
VII. Microbiome-related planning, policy, and outreach

FIG 2 Summary of methods and workflow.
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Question selection process. Prior to the first workshop, all participants were asked
to score the questions from 1 to 10, whereby 1 indicated the lowest level of alignment
with the brief, and 10 indicated the highest alignment. Within each theme, the top
;50% of questions that were most closely aligned with the brief were carried through
to the first of two workshops.

To facilitate parallel sessions, we used the “breakout” room function in Zoom. These
breakout rooms corresponded to the themes identified earlier in the selection process.
Participants were asked to indicate which breakout room/themes they would prefer to
be assigned to in advance. Questions were presented in a shared Google Sheets docu-
ment, allowing participants to discuss each question remotely. Participants were asked
to assign each question a gold, silver, or bronze rating depending on their potential
impact, alignment with the brief, and whether the related body of literature was suffi-
cient to support implementation (Fig. 1) or whether large knowledge gaps persisted.
All of the bronze-rated questions were removed in workshop 1.

During the second workshop, we discussed which of the remaining gold- and
silver-rated questions to retain. At this point, silver-rated questions could be
upgraded and gold-rated questions could be downgraded. A thorough and valid
justification for any upgrades or downgrades was provided and agreed upon, as
required. To ensure a democratic process was upheld, participants were asked to
confirm support or otherwise for any decision prior to finalizing the questions. The
20 questions included in this paper are listed below, including context and future
directions, each led by one to several experts in the field (see Author
Contributions) and reviewed by all authors.

THEMES AND QUESTIONS

Sociocultural interactions

1. How do the microbiomes of displaced or migratory refugee populations
compare to less mobile populations?

2. Are there lifetime microbial consequences of early life a dversity?
3. Given the benefits of microbial diversity, what are the effects of social isolation

and institutional confinement on the health provision of microbiomes to
people?

Indigenous community health and well-being

4. What is the relationship between speaking an Indigenous language and
practicing culture to microbiome integrity?

5. What is the effect of cultural genocide on the microbiome?
6. How do research institutions learn to better engage with Indigenous and

other marginalized communities in microbiome research?

Humans, urban ecosystems, and environmental processes

7. How does pollution affect the human microbiome and are the impacts
unequally distributed?

8. How will climate change and related ecosystem degradation affect
the environmental microbiome, and what will the impacts be on
health?

9. How do we define microbial inequality in urban environments, and can we
better identify, map, and characterize these zones?

10. How can safe and health-promoting environmental microbiomes be
designed and/or restored in urban habitats to ensure equal benefits across
society?

Human psychology and mental health

11. Is there a relationship between the microbiome and mental health, and are
vulnerable populations differentially affected?
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The microbiome and infectious diseases

12. How might infectious diseases affect human microbiomes, and does
socioeconomic status influence this relationship?

13. In populations without the resources to recruit a beneficial microbiome,
how can we incorporate microbiome interventions into the prevention and
treatment of infections?

14. Are some communities disproportionately exposed to infectious disease
agents due to anthropogenic change, such as habitat destruction, human
population migration, and climate change?

15. What lessons have we learned about remote connectivity during pandemics,
and what are the implications for equity and protection from infection?

Human health and food security

16. How do we reorganize food systems to improve food availability, security,
supply chain operations, and economic viability of agriculture, while
promoting access to fresh foods to support a diverse microbiome?

Microbiome-related planning, policy, and outreach

17. Before seeking new solutions, what are the existing community initiatives
and grassroots movements that push for impacts on microbial, social, and
biological equity?

18. What types of reforms are needed in healthcare and policy, in order to
address our understanding of chronic, socially mediated stress on the
microbiome?

19. How do we improve the translation of microbiome research findings to
address social equity?

20. What is the socioecological and political potential of learning about social
inequities in microbial exposure?

A review for each of the “20 important research questions in microbial exposure
and social equity” is presented below under the corresponding broad themes. Each
review was written by at least one expert in the respective field. Feedback was pro-
vided by the group prior to finalizing each review.

I. SOCIOCULTURAL INTERACTIONS

An individual’s early life experiences can have profound impacts on their lifetime
health. Moreover, sociocultural interactions play key roles in shaping the disparities in
health outcomes between different social groups, between displaced refugees and
confined individuals, as well as in less mobile populations for example. The ability,
however, to cultivate a sustained health-promoting microbiome may be difficult in cer-
tain marginalized populations, and yet, could be said to be a hidden foundational
human right. This theme includes important research questions in the realms of socio-
cultural interactions in relation to the microbiome.

1. How do the microbiomes of displaced or migratory refugee populations
compare to less mobile populations? The risk of chronic inflammatory and stress-
related psychiatric conditions is increased in members of urban communities, immi-
grants, and in particular, those moving from a low- to a high-income country during
infancy (6, 7). In addition, the prevalence of chronic inflammatory disorders increases
further in second generation immigrants, suggesting that critical exposures modulat-
ing disease risk occur during pregnancy and infancy (6). Although the mechanisms
underlying the increased risk of chronic inflammatory conditions in immigrants are not
clearly understood, the microbiota potentially plays an important role. Studying micro-
biome differences as a starting point may be important to the health of these com-
munities beyond mere scientific knowledge.
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Geographic location and ethnicity of individuals are consistently noted as funda-
mental drivers of microbiome composition. Gut microbiome biomarkers such as the
genus Bacteroides are associated with high-income countries (and a diet richer in pro-
tein and fat), while Prevotella bacteria are associated with rural and low-income loca-
tions (and a diet richer in plant-based polysaccharides and fiber). Long-term stability of
gut, skin, and oral microbiomes have been observed in stable lifestyles, but alterations
occur when adapting to a new environment, culture, and diet.

In 2020, 91.9 million individuals were identified as people of concern by the United
Nations (e.g., refugees, asylum seekers, internationally displaced people, and stateless
individuals). Refugee research is a nontrivial undertaking, involving interactions with
individuals that may be vulnerable and/or have a history of trauma. Vangay et al. (8)
investigated the microbiomes of immigrants and refugees migrating from Thailand to
Minnesota in the United States. The researchers observed that participants had
reduced gut microbiome diversity and reduced plant-degrading glycoside hydrolase
enzymes, proportional to the time spent in the United States (6). For example, refugees
from the Karen community (Indigenous to the Thailand-Burma border area and
impacted by conflict with Burmese military attacks) were included and had decreased
Prevotella and increased Bacteroidetes after just 6 to 9 months following arrival. The
data from these studies could help shift the centrality of “microbial health” as a con-
cept away from something only associated with white wealthy populations. However,
given the high level of vulnerability in displaced communities, existing processes for
protecting vulnerable research participants is currently insufficient. The potential for
unethical extraction of data must be considered and mitigated.

Given the logistical challenges of conducting research in refugee camps, one poten-
tial comparison group that may be more accessible, though still potentially vulnerable,
are homeless individuals. The U.S. Veteran Microbiome Project has begun research into
the skin, gut, and oral microbiome of an unstably housed population. Initial results
showed that the frequency of homelessness was associated with gut microbial compo-
sition (9), thereby prompting future work focused on potential relationships between
unstable housing, the microbiome, and physical and mental health.

2. Are there lifetime microbial consequences of early life adversity? Adverse
early life conditions are strong predictors of heart, lung, and autoimmune diseases,
cancer, mental health disorders, and premature death (10, 11). The causes of such early
life adversity can range from physical exposures to toxins, including lead, pesticides, or
diesel exhaust (12), to aspects of early social environments like psychological stress
(11, 13) and complex combinations of socioeconomic factors (14). Individuals are often
exposed to multiple sources of early adversity, which may lead to even more extreme
health outcomes (14). For example, a study of nonhuman primates found that individu-
als who experienced increased early adversity died a decade sooner than those who
experienced no adversity (15). Further, effects of early adversity may manifest across
multiple generations (12): offspring of nonhuman primates who experienced early life
adversity also had early deaths (16).

Because humans are long-lived animals, it has been difficult to conclusively link
early life adversity to lifetime microbial consequences. For example, microbiome com-
position in infants is shaped by delivery mode (cesarean section versus vaginal birth),
antibiotic use, and diet (formula versus breastfeeding; acute malnutrition) (17–19).
These factors likewise have been linked to childhood obesity, asthma, and type 1 dia-
betes (19), but multiyear longitudinal studies are needed to show that such effects are
microbially mediated. In nonhuman systems, experimental studies suggest that early
life administration of probiotics can ameliorate adverse immune and mental health
outcomes, providing evidence of a relationship between early adversity and health-
related microbial consequences (20, 21).

Taken together, the evidence to date suggests several important directions for future
research. Do patterns and processes of early life microbial community assembly differ
based on socially constructed factors (e.g., race, income, gender), and if so, why? What
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defines a healthy early life human microbiome, and how is this influenced by social in-
equality? How does early life adversity affect microbial aging (how the microbiome
changes as people get older), and can early life microbial interventions reset the healthy
microbial aging process?

3. Given the benefits of microbial diversity, what are the effects of social
isolation and institutional confinement on the health provision of microbiomes to
people? Confinement is a continuum of socially sanctioned isolation settings ranging
from the most segregated (prisons) to the most normalized (separated educational set-
tings for students with disabilities) and may be best understood as the school-prison
nexus (22). In the most punitive and isolated confinement contexts (i.e., youth deten-
tion, segregated educational settings, and prisons), where youth or adults of color with
and without identified disabilities are disproportionately represented (23–25), a micro-
bial equity lens highlights two main individual and population-level problems: (i) re-
moval from and lack of beneficial microbial communities (26) and (ii) the potential for
overexposure to pathogenic microbes (27, 28). Policies that normalize social segrega-
tion, isolation, and institutionalized confinement are effectively also policies that
impinge on individual microbiota and broader microbiome health. Nevertheless, the
relationship between social and microbial inequity remains poorly understood, let
alone considered in social policy making and scientific agenda setting.

Incarcerated people suffer from higher rates of conditions linked to microbiome
health (29), and barriers exist to providing individual meal plans and activity programs
(30), further creating microbiome disruptions. Historically and currently, inadequate
institutional protections create higher rates of infection in incarcerated populations
due to lack of hygiene sanitation infrastructure, inadequate diet, overcrowding, and
stressful conditions (27, 28). First-hand accounts of inmates receiving none to little per-
sonal protective equipment and access to vaccination are among the issues raised dur-
ing the coronavirus disease 2019 (COVID-19) pandemic (31). Further, much of the focus
on protection utilizes coercive measures such as mandatory blood testing and subse-
quent isolation, making prevention efforts punitive rather than protective (32). A floun-
dering individual microbiome prior to, during, and after incarceration might exacer-
bate existing psychosocial and behavioral health challenges, such as mood,
psychological disorder, and disease (see question 10 [Q10]), which have direct implica-
tions on recidivism, rehabilitation, and reform/revolution of the carceral complex.

These specific, objective, biological/ecological problems undergird more complex
issues with broad ramifications for social equity and environmental justice and open
up questions for future research. Do public health measures intended to reduce expo-
sure to pathogens also reduce exposure to beneficial microbial assemblages, and does
this matter? What comprises microbial equity for confined populations (for example,
dietary improvements and greenspaces)? Could a health-promoting microbiome be
conceived of as a right? What are the effects of social isolation on microbiome compo-
sition and downstream health effects, especially in incarcerated populations?

II. INDIGENOUS COMMUNITY HEALTH ANDWELL-BEING

Indigenous languages are fundamentally connected to the land and the environ-
ment from which they are spoken (33). Furthermore, there is a recognition of a direct
link between language and traditional knowledge as they relate to biodiversity (34).
Cognitive neuroscience has investigated culture as a phenomenon that shapes and
influences various cognitive processes; behavior, schema formation, and memory (35–
39). In this manner, Indigenous cultural practices influence how Indigenous Peoples form
mental schemas related to nature, perceive nature, and remember and pass on practices
related to nature. Understanding the relationship between Indigenous practices, cultural
erasure, and Indigenous engagement in relation to the microbiome and its impact on
Indigenous community health is covered in this theme. Indeed, the majority of human
microbiome research to date has “focused overwhelmingly on populations predominantly
of European descent, and typically those that surround large academic centres” (40). There
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has, however, been increasing interest in studying the microbiome of Indigenous Peoples
(41–43).

4. What is the relationship between speaking an Indigenous language and
practicing culture to microbiome integrity? Indigenous Peoples languages around
the world are fundamentally connected to the land and the environment from which
they are spoken (33). Furthermore, there is a recognition of a direct link between lan-
guage and traditional knowledge as they relate to biodiversity (34). Indigenous tradi-
tional knowledge as it relates to the environment is deeply embedded within
Indigenous “names, oral traditions and taxonomies,” which can be lost when a commu-
nity switches to another spoken language (34). With linguistic and biological diversity
being functionally connected (44), a loss of Indigenous speakers and cultural-knowl-
edge keepers has been shown in some regions to have a direct and negative impact
on local biodiversity (45) with potential impacts on the microbiome. Yet, Indigenous
knowledge has been recognized to be an important facet in curbing the loss of
Indigenous languages and that of biodiversity (46).

“The microbial microcosm is a compelling narrative that situates our human
biome in the biome of the planet, and in doing so, provides a common language
to bridge efforts across and between movements, humans, and our natural
environments” (47).

To date, there has been little to no examination of the relationship between speak-
ing an Indigenous language and the microbial health of an ecosystem. The under-
standing of “co-benefits” has been clearly elucidated with protection of ecosystems
and retention of Indigenous languages going hand in hand (34, 44–46). With the foun-
dational elements of Indigenous environmental stewardship practices being rooted in
Indigenous languages (48), more attention needs to be paid to how the microbial in-
tegrity of an ecosystem fits into this equation from a relational interspecies perspec-
tive. Furthermore, understanding how Indigenous languages and cultural preservation
relate to the human microbiome may support Indigenous community priorities around
revitalization efforts. Moreover, geospatial and metagenomic data may be used to sup-
port community-led studies between Indigenous health and Indigenous land conser-
vation practices, which are strengthened through the continuation and application of
Indigenous languages. Additionally, given the limited number of microbiology researchers
whom identify as Indigenous, there is a substantial need to increase the accessibility of
the microbiology field for Indigenous Peoples, while also eliminating structural barriers for
funding and participation. Moreover, Indigenous sovereignty over any research process
and data collected must be honored.

5. What is the effect of cultural genocide on the microbiome? The Land and
spiritual view many Indigenous Peoples embody directly influences the expression of
culture (49, 50). Creating a reciprocal relationship, the Land informs culture, and culture
informs Land-based practices. This mutualistic relationship plays a role in shaping how
various Indigenous Peoples relate to nature; conservation, food production, land, air,
water protection, care, and cultivation (51, 52). The Khasi Peoples of northeastern India
and Bangladesh believe time creates strength in nature. This culturally driven percep-
tion instructs how the Khasi Peoples relate and care for biodiversity (53). Additionally,
Robin Wall Kimmerer has played a key role in creating a framework for reciprocity with
nature through using traditional ecological knowledge, which is based on her Peoples’
cultural and spiritual understandings of land (54).

These examples illustrate that Indigenous cultures give instruction on how to sus-
tain biodiversity, which can promote health via the microbiome (55). If Indigenous cul-
tures play a role in ecosystem health, conversely, cultural genocide could have an
adverse effect. Insufficient land rights play a considerable role in cultural genocide as it
removes Indigenous Peoples from their lands and communities (43–45). Once the re-
moval happens, the cultural mechanisms that allow knowledge, ideas, and narratives
to be passed on are destroyed, resulting in cultural genocide (56). Cultural genocide
may therefore lead to changes in the microbiome through ecosystem disturbance and
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destruction. Insufficient land rights can also restrict the ability of Indigenous Peoples to
hunt or otherwise gather food, restrict water access, and prevent use of lands for tradi-
tional migratory purposes.

Understanding more about how Indigenous Peoples’ practice of their own cultures
impact the microbiome of the environment and the human host is a worthy research
path. It is important to note, however, that many Indigenous Nations may not want to
share all aspects of their culture as they are held within ceremony. Historical extractive
actions and “biopiracy” by Western researchers have led to mistrust, and some
Indigenous Peoples are reluctant to share their knowledge (57, 58). These perspectives
need to be honored and reflected in any codeveloped and community-led research
methodologies and community partnerships (46). Frameworks for enhancing ethical
microbiome research with Indigenous communities are lacking; however, researchers
may wish to draw upon similar established frameworks in genomics research (e.g., ref-
erence 59).

6. How do research institutions learn to better engage with Indigenous and
other marginalized communities in microbiome research? Extractive practices have
unfortunately been a historical legacy in regard to research “on” or “for” Indigenous
and other Minoritized Peoples as opposed to “by” or “with” (60), including in the area
of microbiome research (61). Although some microbiome research has sought to
address community concerns (62, 63), the vast majority has been carried out simply to
“gain a better understanding of fundamental aspects of the human microbiome
through the examination of minority populations, providing little or no direct benefit
to the study population” (40). As microbiome research grows, including in the area of
therapeutic interventions, concerns have been raised that the continued exclusion and
lack of participation of minority communities in microbiome research will further exac-
erbate existing health disparities (63).

Community engagement designs that are responsive to Indigenous and Minoritized
Peoples’ needs and concerns have greater potential to be leveraged into decreasing the
research disparity gap. This means ensuring communities lead the way as experts in iden-
tifying existing processes, knowledge (past and present), as well as the questions com-
munities may want to research. Supporting community-led initiatives will also help to pri-
oritize and recognize the importance of community and data-level sovereignty (64), the
importance of traditional knowledge, and ensure benefit-sharing processes are defined
and implemented (65). Researchers also need to be mindful of the importance of
strengths-based approaches to research in community-led partnerships as opposed to fo-
cusing only on deficit-based narratives and research models that risk further divides with
communities (66). Collectively, these points drive home the repeated importance that
microbiome research agendas in Indigenous and Minoritized communities should be
“community-led” and “community driven” with supportive allyship present. Lessons may
be learned in this respect from the developing literature in other synergistic areas such as
Indigenous bioethics and Indigenous genomics (67–69).

III. HUMANS, URBAN ECOSYSTEMS, AND ENVIRONMENTAL PROCESSES

Considerable work has linked climate change, pollution, and ecosystem degrada-
tion to reduced human health (65–72). Nonetheless, the roles these factors play in
modifying microbial ecosystems and how they drive microbial inequality is relatively
underexplored. This theme includes questions that ask how pollution, climate change,
and ecosystem degradation affect the human and environmental microbiome, and
how this may impact human health and social equity. We also explore how design and
restoration of environmental microbiomes could be used in urban habitats to ensure
equal benefits across society.

7. How does pollution affect the human microbiome, and are the impacts
unequally distributed? Pollution takes several forms, each with undesirable effects on
human health and ecosystem integrity. Examples of chemical pollution include poly-
chlorinated biphenyls in soils and airborne particulate matter. Exposure to these chem-
icals has been linked to immune dysfunction (61) and respiratory diseases (62). Several
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studies suggest chemical pollution can adversely affect the human microbiome. For
example, xenobiotic-derived metabolites promote gut inflammation (63) and lead to
changes in metabolism, immunity, and neurological function (64, 65). Ozone is associ-
ated with lower gut microbial diversity (66), and traffic-related pollution may nega-
tively impact metabolic health via the microbiome (67). Noise and light pollution have
increased to alarming levels across the world (68–70). Studies demonstrate deleterious
impacts of noise on the mouse gut microbiome (72) with implications for host inflam-
mation and associated diseases (73). One study showed that prolonged artificial light
exposure can alter gut microbiota and promote nonalcoholic fatty liver disease (74).
However, there is a clear deficit in studies exploring the effects of pollution on the
human microbiome.

Social disparity in exposure to pollution is well documented. For example, people
living in areas of higher deprivation are more likely to be exposed to poor air quality
(75, 76). Therefore, the impacts of exposure are unequally distributed across social
groups. The ultimate goal should be to reduce pollution and associated impacts to the
lowest possible levels. This can be fulfilled through transdisciplinary solutions that pro-
mote equitable access to health-promoting environments (e.g., safe, biodiverse green-
spaces), improving housing conditions, and policy changes that enforce improved moni-
toring and regulation of pollutants while subsidizing alternative sustainable sources.

Researchers should draw upon the aforementioned nonhuman animal-based stud-
ies for inspiration to investigate how chemical, noise, and light pollution may affect
the human microbiome. Additional epidemiological studies investigating the impacts
of pollution on the microbiome and human health could help to stimulate much-
needed policy changes.

8. How will climate change and related ecosystem degradation affect the
environmental microbiome, and what will the impacts be on health? Ecological
impacts of climate change include loss of ecosystem functions (e.g., carbon sequestra-
tion, climate regulation, ocean productivity, and crop yields), changing species distri-
butions, and the emergence of new pests and diseases. These impacts can occur
directly through context-specific climatic change (i.e., changes to precipitation, tem-
perature, extreme weather events) or indirectly through altered delivery of ecosystem
services (72). Ecosystem services are the myriad ways that people benefit from nature,
including provisioning (food and fuel, energy, materials, medicines), regulating (habitat
creation and maintenance, air quality, water quality), and cultural services (supporting
identities and physical and psychological experiences) (72). Many of these ecosystem
services have a microbial component where environmental conditions strongly control
their distribution and activity. For instance, microorganisms in soils play a role in air
quality and climate regulation, erosion control, water and waste purification, plant pro-
ductivity, and disease control (73). Thus, as soil communities are altered through cli-
mate change, we should expect changes in the delivery of ecosystem services with
implications for human health (77, 78). This is true for nonsoil environments as well,
including host-associated microbiomes such as gut ecosystems (79).

Microorganisms play a key role in the human health outcomes currently experi-
enced or expected to arise from climate change, including temperature- or air quality-
related illnesses, vector-borne diseases, water-related illness, food safety and nutrition,
and mental health and well-being (71). The vulnerability of groups of people to these
health risks are a combination of their sensitivity, exposure, and capacity to respond
(71). Socioeconomic status may affect which groups of people experience a higher bur-
den of climate change health risk by influencing these risk factors. There are many
pressing research avenues at the nexus of climate change, microbial ecology, ecosys-
tems, and human health, including the following: (i) understanding the causal mecha-
nisms between vulnerability factors for health risk and microbial functions, (ii) develop-
ing valid indicators for health risks and early warning systems, (iii) weighing the
effectiveness of various measures that are designed to enhance resilience and reduce
health impacts, (iv) uncovering the mechanisms underlying the relationships between
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ecosystem services and human health (78), and (v) predictive modeling of microbe dis-
tributions and functions and human health impacts (74).

9. How do we define microbial inequality in urban environments, and can we
better identify, map, and characterize these zones? The answer to this question ulti-
mately lies at the intersection between microbial biogeography and the social, eco-
nomic, and physical underpinnings of environmental justice. Environmental justice
encompasses environmental “goods,” such as urban greenspace, as well as “bads,”
such as air pollution. For humans, exposure to pathogens is considered “bad,” while ex-
posure to diverse environmental microorganisms, which may foster healthy immune
development, is considered “good” and has been proposed as a type of ecosystem
service (80). To date, most research on geospatial relationships between health and mi-
crobial exposures has focused on microbial “bads” (81), which are often linked to a
point or area source, such as waste treatment facilities. Urban slums can also provide
breeding grounds for transmission of pathogens, due to overcrowding, poor housing
quality, inadequate sanitation, and lack of access to clean water (75). On the other hand,
urban sprawl is also leading to increased risk of vector-borne zoonotic diseases (76).
Recently, spatial variation of microbial “goods” and their linkages with urban design
have begun to receive greater attention (see, for example, references 80 and 82 to 91).

In our consideration of beneficial microbial exposures as a spatially distributed eco-
system service (80), we must first understand the “needs of the population” for micro-
bial exposures and the degree to which microbial geographic distributions are influ-
enced by human decisions and processes. Only then can we begin to operationalize
policies and systems to promote distributional justice of microorganisms. Assuming
that we could characterize certain microbial exposures as “goods” or “bads,” one prom-
ising approach for evaluating the equity of their spatial distribution is to use equally
distributed equivalents (92). Benefits of using an equally distributed equivalent
approach to mapping microbial exposures are: (i) absolute rather than relative abun-
dance values are used; (ii) ability to objectively quantify exposure distribution to sup-
port decision-making; and (iii) “good” and “bad” microbial exposures are consistently
and accurately represented.

Unfortunately, defining how much and which types of microbial exposures may
provide health benefits to different human populations is currently an insurmountable
challenge. No microorganisms are inherently “good” or “bad,” rather their pathogenic
or salutogenic potential is determined by context and may change over time or with
ecological disruptions (e.g., antibiotic use). Racial, ethnic, cultural, religious, gender,
socioeconomic, and other demographic factors may also influence the relationship
between microbial exposures and individual well-being.

10. How can safe and health-promoting environmental microbiomes be designed
and/or restored in urban habitats to ensure equal benefits across society? It has been
argued that microbiota should be considered ecological determinants of health, given
their critical role in human health and the interrelated systems we depend upon for
survival (93). Access to plant-associated microbial diversity seems to offer health bene-
fits to humans through microbial colonization (94–96). It is necessary to understand
microbiomes in a socially just framework to ensure equal access to these benefits. The
structure and function of microbial communities are known to covary with the urban
landscape in the air (97–100), soil (101–103), and built environment (104–106). Urban mi-
crobial diversity is patchy, and greenspaces are hot spots for plant-associated microbes.
Likewise, greenspaces are unevenly distributed through cities and may lack the diversity
offered by access to nonurban nature (107). Use of greenspaces (and subsequent access
to microbial benefits) is not determined solely by proximity. It may depend on human
residential stability (107) and the physical/emotional safety of the spaces (108).

By altering the structure of the urban environment to increase greenspace outdoors
(109) and greenness indoors, it may be possible to promote safe and healthy microbial
access in cities for all residents. The use of small land parcels such as vacant lots could be
used for microbial restoration interventions to provide a more equitable coverage of bio-
diverse habitats across urban landscapes (110, 111). Likewise, greater incorporation of
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green infrastructure (112) into the built environment, such as offices and shops, will offer
more equitable access to microbial benefits. Greater awareness and education of microbial
ecosystem services will help urban planners and policymakers design safe and health-pro-
moting microbiomes. Dissemination of microbial information and access can be offered to
stakeholders and decision-makers through a series of lectures, workshops, and conferen-
ces. In general, providing this information in an intelligible (i.e., nonscientific) way is key,
as the majority of the conversation to date has been rooted within academia.

IV. HUMAN PSYCHOLOGY ANDMENTAL HEALTH
11. Is there a relationship between the microbiome and mental health, and are

vulnerable populations differentially affected? In 2004, the “Old Friends” hypothesis
was introduced (113). This hypothesis proposed that a failure of immunoregulation
and associated health problems (e.g., mental health conditions) in modern Western
environments (83), indicated by a balanced expansion of effector T-cell populations
and regulatory T cells (Treg), is due to reduced exposures to microorganisms with
which humans coevolved, including: (i) pathogens associated with the “old infections”
that were present throughout life in evolving human hunter-gatherer populations
(114); (ii) the commensal microbiota, which have been altered by the modern Western
lifestyle, including a diet that is frequently low in microbiota-accessible carbohydrates
(115–117); and (iii) organisms from the natural environment with which humans were
in daily contact with (and, consequently, had to be tolerated by the immune system)
(83). More recently, the observation that two major socioecological trends (i.e., the loss
of biodiversity, and increasing incidence of inflammatory diseases) are interdependent
led to the biodiversity hypothesis (67, 99, 100). This states that people’s reduced con-
tact with nature and environmental biodiversity has altered the human commensal
microbiota’s capacity to induce immunoregulation and to prevent inappropriate
inflammation as well as associated negative health outcomes (7, 89, 118).

In light of evidence which supports the hypothesis that lack of exposure to diverse
microbial environments can lead to chronic low-grade inflammation and increased risk
of stress-related psychiatric disorders, recent studies point toward potential interven-
tions to restore immunoregulation (e.g., probiotics) (119). Moreover, it is clear that liv-
ing in close proximity to greenspaces reduces overall mortality, cardiovascular disease,
and depressive symptoms and increases well-being (120–124). Initiatives such as the
Create Outdoor Equity Grant Program in Colorado, designed to increase access and op-
portunity for underserved youth and their families to experience greenspaces, state
parks, public lands, and other outdoor areas, have promise to both increase microbial
exposure and increase social equity (125). Perhaps now more than ever, initiatives that
focus on access to greenspace and diverse and healthy diets have potential to increase
not only physical health but also mental health, on local and global scales. Knowledge
gaps include guidelines on best practices for maximizing nature exposure and whole
dietary and probiotic interventions with potential for enhancing immunoregulation,
limiting inappropriate inflammation, and reducing the risk of mental and physical
health conditions.

Might centering microbial equity as a facet of purported “rehabilitation” advance
the creation of institutions that, as Angela Y. Davis presciently said nearly 2 decades
ago, could “lay claim to the space now occupied by prison [in order to] eventually start
to crowd out the prison so that it would inhabit increasingly smaller areas of our social
and psychic landscape” (reference 253, pages 107 and 108).

V. THE MICROBIOME AND INFECTIOUS DISEASES

Infectious diseases affect human microbiomes and may exacerbate socioeconomic
disparities. Indeed, some communities are disproportionately exposed to infectious
disease agents due to anthropogenic environmental change. Moreover, populations
without the resources to recruit a beneficial microbiome require interventions to pre-
vent and treat associated infections. This theme discusses these phenomena in
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addition to asking the question of what lessons have been learned from pandemics, in
particular, the implications of remote working for equity, and protection from
infection.

12. How might infectious diseases affect human microbiomes, and does
socioeconomic status influence this relationship? The human microbiome is
described as having approximately 3.3 million nonredundant microbial genes, which is
about 150 times more than the human genome (126). Despite this, the associations
between microbiomes, infectious diseases, and socioeconomic status (SES), are rela-
tively unexplored. In 2015, Logan argued that in “western industrial nations a “disparity
of microbiota” might be expected among the socioeconomically disadvantaged, those
whom face more profound environmental forces” (127). This was corroborated in a
recent study which examined the association between gut microbiota and social fac-
tors in twin cohorts. Study participants that experienced health disparities reportedly
had lower SES and education levels than those that did not (128). Participants with
lower SES reportedly had lower alpha diversity in gut microbiota, which can influence
health factors such as metabolism, gene regulation, and host immune responses (128–
130). In other studies, lower neighborhood SES has been associated with reduced di-
versity of colonic (131) and salivary microbiota (132), and family SES is associated with
the gut microbiome in infants and children (133, 134).

Historically, infectious disease research has focused on pathogens alone; however,
more is being learned about the host-pathogen relationship and its effects on disease
establishment and long-term health effects (135). Outcomes of infectious disease
depend greatly on the microbial inhabitants of an individual (136). In 2007, the Human
Microbiome Project was launched by the National Institutes of Health and started the
developing field of microbiome research (137). Since that time, countless discoveries
have been made regarding the complexity and interconnectedness of microbes associ-
ated with humans. For example, a person’s gut microbiome influences other body
processes like metabolism, disease, and neurological processing (138). A stable and
diverse gut microbiome will also aid in the regulation of homeostasis via, for example,
cell signaling, and the production of health-promoting metabolites (e.g., the short-
chain fatty acids butyrate, acetate, and propionate) (138). Many other body sites have
a microbiome, and they are relatively underexplored. The skin, lung, vaginal, and oral
microbiomes for example, are all important for human health. Their role in regulating
diseases requires additional research.

The reciprocal relationship between one’s microbiome and immune system can
influence the immune response, thus potentially affecting a person’s susceptibility to
infectious diseases (136). One’s physiology is a result of the metagenome, or the indi-
vidual’s genes combined with microbial genes (139). The countless sets of microbial
genes affect the expression of our own human genes (139). The complex relationships
between host and microbiome are largely unknown. One of the most widely studied
microbiomes is the metabolic network of the human gut. Microbes found in the
human gut can downregulate or upregulate genes that result in metabolic disorders,
gastrointestinal disorders, and psychological disorders (140). These conditions can be
important risk factors for infectious disease severity (141).

In communities that experience deprivation, an individual’s metagenome will most
certainly be affected. It is in these communities that greater numbers of microbiome-
influenced diseases are reported (6, 128, 142–144). Vulnerable populations and the tra-
jectory of immune responses as a result of social inequities need to be examined more
closely. This is one pathway to establishing a more equitable society.

13. In populations without the resources to recruit a beneficial microbiome,
how can we incorporate microbiome interventions into the prevention and
treatment of infections? Certain microbial community members are of greater impor-
tance for the host and for supporting microbial stability (145). Collectively, a stable mi-
crobial community can make the human host less susceptible to infection (146). This
decreased susceptibility has been demonstrated through microbial competition for
nutrients, antimicrobials, biofilm formation, and physical exclusion on host cell

Minireview

January/February 2022 Volume 7 Issue 1 e01240-21 msystems.asm.org 13

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 2

0 
Ja

nu
ar

y 
20

22
 b

y 
24

02
:6

94
0:

40
6:

c0
0:

d1
62

:1
ea

8:
98

d7
:a

62
.

https://msystems.asm.org


surfaces, disruption of other microorganisms’ biofilms, and other mechanisms
(reviewed in references 147 and 148). Commensal microorganisms can help prevent
infections by improving host immune function; for example, by increasing gene
expression for mucin production, and stimulating protein synthesis to enforce tight-
cell junctions between gut epithelial cells (reviewed in references 147 and 148).

Using microbial therapeutics (e.g., probiotics) to treat active infections may be
effective, and their use is becoming more common in medical practice in conjunction
with, or as a replacement for, antibiotics (149, 150). Yet, potential treatment with probi-
otics requires the time, money, availability of relevant strains, and interest in identify-
ing the infection and a suitable probiotic treatment. For anyone without access to
affordable, culturally safe, and equitable health care services (151), obtaining personal-
ized treatment resources may be extremely difficult. With prevention strategies likely
being more effective than reactive postinfection strategies, examining the use of die-
tary-based beneficial microorganisms remains a promising cosolution (152).

Poorly functioning microbiomes compound over time and over generations (115).
Long-term solutions are required to ensure access to fresh, high-fiber, and nutritious
foods over a lifetime—long enough for stable microbial communities to promote a
healthier host (153, 154). It is not a lack of scientific knowledge which hinders the use
of diet to recover beneficial gut microbiomes, which engenders the elegantly simple
question: so why don’t we? Establishing or recovering functional gut microbiomes
involves being able to acquire and retain microorganisms, which necessitates commit-
ments to diet or lifestyle changes, and importantly, the means and resources to engage
in these changes. Simply stated: you cannot eat more vegetables if you cannot acquire
them. For this, we need to stop thinking about strategies for “microbial-based interven-
tion” and instead focus on social programs which support “microbial-promoting life-
styles”. Future research efforts should focus on identifying barriers to equitable imple-
mentation from the personal to community scale. For example, lack of dental care
access and poor oral health can impede fiber intake (155). Again, it is important to
acknowledge that other body sites have microbiomes that are relatively underexplored
and require further research to determine their potential roles in the prevention and
treatment of infections.

14. Are some communities disproportionately exposed to infectious disease
agents due to anthropogenic change, such as habitat destruction, human
population migration, and climate change? Anthropogenic land use change and cli-
mate change are important drivers of infectious disease outbreaks (156–160). These
two drivers result in increased human contact with wildlife hosts of infectious disease
via biodiversity loss, habitat fragmentation, range shifts, and migration (156, 161, 162).
The impacts of land use and climate change (including disease exposure) are not
equally distributed across landscapes or human societies (72, 163, 164). For instance,
communities with livelihoods dependent on land conversion, living close to degraded
land, or with a changing climate may have greater exposure to infectious disease
agents (72, 165). Those involved in the wildlife trade also face higher exposure (72).
Furthermore, land degradation is an important driver for human migration (166), which
is associated with poor health outcomes due to a lack of pre- and postarrival health
care. This could potentially lead to infectious disease outbreaks (164, 167) and substan-
tially affect vulnerable communities (168).

In particular, women and Indigenous communities may be among the groups most at
risk of infection (72). Globally, 70% of the world’s poor are women, and 70% of the world’s
health care workers are women (169). Moreover, the colonization of Indigenous land and
Peoples continues to result in health inequalities and a lack of culturally appropriate
resources, contributing to a higher risk of infectious disease (72, 170).

Recent UN reports on infectious disease indicate that most governments worldwide
are concerned about social equity and exposure to emerging diseases (171). We echo
their call for collaborative land protection and rehabilitation that is sensitive to local
context (172) and Indigenous knowledge (173, 174). For instance, Indigenous Peoples’
land sovereignty can provide an opportunity to decolonize land practices (175) and
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strengthen the resilience of communities especially when resource distribution is dis-
rupted by events like a pandemic (171). In addition to basic research on land use
change (176), climate change (177, 178), and emerging diseases (179), we need a bet-
ter understanding of the degree to which restoration and sustainable land manage-
ment reduce disease exposure. Outcomes of this research and benefits from the health
system need to be shared equally (72) and incorporated into just, diverse, equitable,
and inclusive policy.

15. What lessons have we learned about remote working during pandemics,
and what are the implications for equity and protection from infection? The impact
of natural disasters and financial recessions on populations is determined by occupa-
tion, education, income, housing situation, structural bias, and discrimination (180–
182). COVID-19 has made these inequities more apparent. Individuals with low SES or
minority status experience disproportionately higher COVID-19 infections, hospitaliza-
tions, exposures, financial hardship, and deaths (183–187). Preliminary research con-
nects COVID-19 with the microbiome. For example, altered gut microbial metabolites
could mediate COVID-19 risk factors, and gut microbiome dysbiosis may play a crucial
role in the poor outcomes of COVID-19 in elderly, diabetic, and hypertensive patients
(188, 189). Infectious disease exposure in individuals with lower SES and minorities is
not exclusive to COVID-19 (190). Studies have repeatedly demonstrated the dispropor-
tionate impact of tuberculosis (191), sexually transmitted diseases such as HIV/AIDS
(192), and respiratory diseases (193) on these groups as well.

A key venue of disease exposure is in the workplace. The requirement for continued
income may outweigh potential risks of exposure (194) and can lead to delaying doc-
tor visits until absolutely necessary (195, 196), thus increasing the likelihood of severe
outcomes (176, 197). Employers can take evidence-driven steps to promote safe and
equitable working conditions. Mandated paid sick leave when ill can decrease trans-
mission while reducing concerns over diminished wages (198, 199). Providing guid-
ance in selecting care can also result in increased access and utilization of health care
services (200, 201). Quarantine is understandably not an option for everyone. In situa-
tions where employees are not able to perform duties from home (e.g., for “key work-
ers” such as medical staff or manufacturers of essential goods), increased pay should
be considered. However, employers should strive to create a flexible and inclusive
work culture and environment, and where possible, include the option of remote work-
ing (202, 203).

There is already a broad understanding of the steps that can be taken to decrease in-
fectious exposures, and individual organizations should investigate their own policies and
practices to limit the risks of infectious disease exposures to their employees or customers.
However, employees working remotely, especially from home, may not have the resources
or agency (i.e., renters) to improve the quality of their built environment. Research into
simple and affordable strategies to improve building air, sound, and light quality can
improve occupant well-being. Research into the feasibility of improving old building stock
can identify where to focus renovation efforts to maximize health interventions, for exam-
ple, public workplaces versus apartment complexes.

VI. HUMAN HEALTH AND FOOD SECURITY
16. How do we reorganize food systems to improve food availability, security,

supply chain operations, and economic viability of agriculture, while promoting
access to fresh foods to support a diverse microbiome? Today’s global food system
and its corollary modes of production, processing, transportation, and distribution are
a product of centuries of colonialism, forced migration and enslavement, genocide,
extraction of natural resources, and exploitation of human labor (204–206). Human
health and well-being garner minimal concern within the industrialization of food sys-
tems as capital and private interests dictate the parameters of production and distribu-
tion (207). Structural inequalities embedded within food systems constrain possibilities
for humans—and the microbial communities inhabiting them—to flourish (208).
Indeed, commercial tactics in minority and deprived communities are a fundamental
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part of structural poverty and structural racism (209). Arguably, the entire retail envi-
ronment in disadvantaged communities (and the larger neighborhood environment) is
commercially engineered to promote the consumption of unhealthy, ultraprocessed
foods by default, foods that are detrimental to the gut microbial ecosystem (127, 210).

The global industrial food system is a leading cause of climate change, environmen-
tal degradation, and biodiversity loss. Even those of economic means may struggle to
nourish a diverse microbiome – or alternatively, buy their way out of an imbalanced,
unfavorable microbial environment (211, 212).

Therefore, instead of “food security,” we adopt a paradigm of “food sovereignty,”
which offers a more comprehensive path toward solving the intersecting crises of
human health and the environment (213). “Food sovereignty” addresses structural bar-
riers and discrimination that hamper access to farming and other land-based liveli-
hoods among Black, Indigenous, and other communities of color (214, 215).
Additionally, it calls for systems of production and supply chain operations to shift
away from fossil fuels and instead adopt green energy and regenerative practices that
restore biodiversity to soils and ensure clean air and water to support surrounding
human and nonhuman populations; agroecology could help remedy these multidi-
mensional crises (216).

More research is needed to examine how to adopt a human rights-based approach
to food frameworks while also dismantling the stigmas around welfare assistance and
the commercial tactics that drive structural poverty and promote the nefarious cycle of
ultraprocessed food consumption (210). In terms of microbes, research must examine
the effects of industrial diets such as the “Standard American Diet” on gut micro-
biomes, and of other variables that shape microbial communities (212, 217).
Comparative research is also needed to examine the structural constraints faced by
people with less diverse or favorable microbiomes versus those with more favorable
ones (2). Finally, it is imperative that research and policy both protect food system
workers—providing them with living wages, health insurance, paid sick leave, and
other benefits—and uphold the dignity of people in efforts to ensure equitable distri-
bution of food resources and to abolish “food apartheid” (Karen Washington quoted in
reference 205).

VII. MICROBIOME-RELATED PLANNING, POLICY, AND OUTREACH

Microbiome-related planning, policy, and outreach are imperative to the successful
implementation of interventions that seek to reduce social inequities in the microbial
realm. However, before seeking new solutions, there may be existing initiatives that al-
ready promote these interventions, or that can be transferred to this area. Reforms are
needed in health care to address our understanding of chronic stress on the micro-
biome. Moreover, how to improve the translation of microbiome research findings to
address social equity requires deep consideration. This theme contributes to these im-
portant policy-related phenomena, to frame the microbiome as a facet of social equity
and stimulate much-needed policy discourse.

17. Before seeking new solutions, what are the existing community initiatives
and grassroots movements that push for impacts on microbial, social, and
biological equity? We are unaware of community initiatives to date which explicitly
work toward microbial equity in any context. However, there are many community organi-
zations and grassroots movements which effectively—and perhaps inadvertently—pro-
mote microbial exposure equity by providing resources to obtain beneficial microbial
exposures (e.g., convivial activities in nature), protecting against harmful microbial expo-
sures (e.g., paid sick leave, personal protective equipment, or hygiene facilities), and sup-
porting health and productivity. A framework for this is presented in Fig. 1.

Providing resources to obtain beneficial microbial exposures may include food,
water, environmental spaces, or housing security. Supporting a healthy and productive
gut microbiome is a side effect of programs which support local food production sys-
tems, integrate local food production into education systems to provide healthy meals,
improve availability of fresh foods, create community gardens, and incentivize business
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development to reduce food deserts. Similarly, creating equitably located and
designed public greenspaces in urban areas can promote beneficial exposures to envi-
ronmental microbiota. Flourishing urban green infrastructure (including the microbial
components) can reduce wastewater overflow, which could contaminate freshwater
sources, and increase shade to cool neighborhoods. This could potentially reduce heat
stress and the associated “leaky gut” or microbial dysbiosis (218–220).

Initiatives that support housing renovation, particularly after natural disasters that
lead to microbial degradation of infrastructure, can protect people from harmful expo-
sures (221, 222). So, too, can organizations which promote paid sick leave, thus reduc-
ing the spread of infectious diseases (185, 199). Additionally, medical and dental pre-
ventative care across industries and extended to part-time, contract, and temporary
employees, could also be valuable in preventing harmful microbial exposures.

Finally, community initiatives that support health and productivity most often
focus on reducing stress and improving quality of life. However, these are posited to
beneficially impact host-microbe interactions due to the reduction of stress-related
inflammation (223, 224). Improving safety and accessibility of public transportation,
reducing harm caused by institutional racism or sexism, improving indoor and out-
door air quality, and other solutions can reduce microbial exposure inequity by
removing those problems that disrupt human microbiomes and cause further harm
(219, 225–227).

18. What types of reforms are needed in health care and policy, in order to
address our understanding of chronic, socially mediated stress on the microbiome?
The cultural context that creates and supports the cognitive architecture of the people
making health care decisions and policy must be reviewed. Racialized white Western
culture has a long history of supremacy; over people, land, and thought. Knowledge
supremacy is defined here as the phenomenon of a homogeneous, discriminating, and
dominating knowledge pool (211). It can corral society’s imagination, and thus contrib-
utes to a hegemonic ruling class over all aspects of our society (228), which can include
health care frameworks and policy.

Arguably, current health care practice and policy fail to include sufficient ecological
knowledge (229). This centers the responsibility for health on the individual. For exam-
ple, the “five-a-day” campaigns (referring to the consumption of fruit and vegetables),
“sugar tax” (the taxation of any product with a high sugar and/or fat content), or the
calls for more physical activity, all define health within the context of individual
choices. These approaches ignore the requirement of policies that protect people and
communities from environmental pollutants, health-demoting habitats (e.g., lacking in
biodiversity, safety, accessible recreational spaces), and poverty, which weigh heavily
on health outcomes as they cause systemic changes to both human and environmen-
tal microbiomes (230). The effects of environmental stress and insufficient microbial
exposures likely impact human health (e.g., via dysregulation of the immune system)
(231). Emerging research highlights how stress from environmental pollutants or psy-
chosocial pathways can affect the internal human microbiome through the gut-hypo-
thalamus-pituitary axis (232), which can potentially contribute to an array of adverse
health outcomes. Additionally, because health is rarely framed from an ecological per-
spective, current health care policies are insufficiently aligned with paradigms that sup-
port the restoration of biodiversity, including the environmental microbiome.

Integrating knowledge of the microbiome at a systemic level will likely create new
opportunities to optimize health care practices and policies that support equitable health
outcomes. Transdisciplinary collaborations are required to address social (including racial)
health disparities in microbiome and health research (233).

19. How do we improve the translation of microbiome research findings to
address social equity? The translation of microbiome research into practice is already
under way by the biotechnology sector. Examples range from popular communication
(TED talks), the commercialization of self-directed precision medicine via direct-to-con-
sumer sequencing (Viome), and the advertising and myth making around the micro-
biome as a cure-all (234). All of the above continue to concentrate power and capacity
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in high-income countries while extracting value from marginalized communities.
Acknowledging the shared path with businesses, policy, and society, the research com-
munity can directly center equity as a key value driving the translation of research into
practice.

The translation of microbiome knowledge and research into technologies, poli-
cies, and programs that ensure equitable distribution of benefits is determined by
who gets to shape them and on what grounds (235, 236). We suggest a deliberately
inclusive and proactive approach that recognizes the existing biases of the research
community on lines of race, class, gender, sexuality, and disability (237) and the limi-
tations of using unmarked stakeholder types. Furthermore, deliberate geographical
inclusion is needed to address the representation and resource imbalance favoring
both researchers and researched populations in the current G7 countries; the United
States, Canada, the United Kingdom, France, Germany, Italy, Japan, and the European
Union (238).

To address the pervasive lack of trust in science-led policy as revealed by the
COVID-19 pandemic (239, 240) and build trust, agency and capacity across global
communities, it is key to recognize that stakeholder engagement is equitable only
when it genuinely gives power to a wide range of social groups (241) and does not
mine lived experiences for upstream value in the scientific and business communities
(242). As we move toward formulating actionable points for diverse fields, further
participatory research is needed to ensure blind spots (e.g., cognitive biases) are rec-
ognized and addressed.

Microbiome research also needs to reckon with a fear of “germs” that is present in
the public imagination and heightened by the COVID-19 pandemic. Many artists and
designers have been working on projects that build awareness of the importance of
the microbiome beyond pathogens: Host by Baum and Leahy and Richard Beckett
(243), With Microbes by Ioana Man (244), and Subculture: Microbial Metrics And The
Multi-species City by Kevin Slavin, Elizabeth Hénaff, and The Living (245). Additionally,
and to diversify the audience of this kind of work, it is important to recognize that the
interdisciplinary approaches to understanding the microbiome are part of people’s cul-
tures and ancient practices across the globe (246, 247). It is also important to expand
the creative imagination around creative outputs to include them. Design can push for
equity by allowing scrutiny of what the implementation of new research findings could
look like in different communities and situations (248). For instance, the design compo-
nent of Microbiome Inspired Green Infrastructure (249) opens up what our cities might
look like if we were to design green infrastructure with the microbiome in mind and
starts to solicit feedback from diverse stakeholders. These forms of transdisciplinary
collaborations can help us develop a common language and open forums needed to
solicit diverse perspectives required to distribute the benefits of research findings in an
equitable manner.

DISCUSSION AND CONCLUSION
20. What is the socioecological and political potential of learning about social

inequities in microbial exposure? The questions posed in this paper raise acutely
challenging questions for policy makers. The study of the health benefits of microbial
exposure highlights perhaps the greatest challenge for policy makers—developing
policy in the absence of complete information. This is familiar terrain for researchers in
this field, where important discoveries have been made but much is yet to be resolved.
In the first instance, making use of the particular skills needed to recognize and navi-
gate blind spots and preconceptions will make a transformative difference to policy
making. Codesign and delphi-type research exercises can help, but questions can be
asked in terms of what more can be done to drive policy, and what is most effective.
Amid increasing awareness of the importance of intersectionality in developing policy
goals and translating scientific research into practice, “microbes and social equity”
research is highly interdisciplinary, a facet that will be central to progress in this space.
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The 20 important research questions in this paper are consistent with several of the
UN sustainable development goals (SDGs), either directly or indirectly. For example, Goal
3: Good Health and Well-being, Goal 10: Reduced Inequalities, and Goal 11: Sustainable Cities
and Communities. The review highlights that the microbiome is essential to favorable
health and well-being (Goal 3); and there are likely significant inequities in microbial expo-
sures (Goal 10); furthermore, functional microbial communities are essential to flourishing
ecosystems, and therefore to healthy and sustainable human communities (Goal 11).
Consequently, the knowledge gained from answering these 20 questions can make a vital
contribution to supporting the progress of the SDGs. Moreover, the microbial exposure
and social equity questions here directly overlap with the One Health, Planetary Health,
and EcoHealth frameworks, and fit within the realms of antibiotic stewardship, and rural
health initiatives. Therefore, integration within these established frameworks in practice
will likely increase the effectiveness of strategies and reduce incommensurability between
disciplines.

The thematic categories identified in this paper reinforce messages that arise from
other horizon-scanning exercises, first among which is the importance of research-led
policy making. For example, when modellers work collaboratively with policy makers
(e.g., in Australia and New Zealand [250]), effective interventions can be designed. See
Q9 for more details.

However, this need for research-led policy making in an environment where im-
portant data are missing reinforces the importance of recognizing cognitive biases
and developing tools to make progress in the absence of complete information.
We are becoming increasingly aware that negative impacts on human health and
ecosystems are the result of cumulative and interconnected processes (251), and
optimizing how we measure and value information is imperative to identifying crit-
ical pathways, decision-making, and design. This relies on embracing probability in
decision-making: at present, focus tends to be on biology rather than psychology,
and certainty rather than probability. It would be prudent to recognize the value
of likelihood, possibility, and gradients rather than choices between alternative
options.

International and national policy frameworks are increasingly refined and nuanced
in addressing inequities. However, while scientific research can help address technical
challenges, these developments will be successful only if they are translated into a lan-
guage that is understood by nonexperts. Recent political experiences have highlighted
the difficulties in reaching consensus or shared understandings of needs. In this way,
embracing probability—not only as a means of weighing competing needs in policy
discussions—but in wider political discourse with an electorate, could help identify
and reach shared value systems. Research in this field is urgently needed to develop
new tools that can help address cognitive biases and encourage the imagination that
is required to identify and reach shared goals.

The health of an individual is something that can be assessed and quantified and
has its own measures of resilience and functioning. In contrast, equity is relational
and describes the condition of an individual relative to another in a community.
Further research is needed so that policy makers can better articulate questions that
manage this balance between the health of an individual and the basic human tend-
ency of seeing our own situations in relation to others’. It is imperative that we
address the nefarious commercial tactics in minority and deprived communities that
drive structural poverty and racism. These tactics also drive the continuation of the
vicious cycle that underscores disparities in health via the microbiome. This will not
be an easy task as the same commercial pressures affect political will; however, pro-
moting discourse on this topic is an important starting point.

It is also imperative that we advance equity and inclusion in microbiome research
and training. Foxx et al. recently proposed ways to improve inclusion in microbiome
science, advocating for resource expansion to enhance capacity (252). The authors
urged mentors, collaborators, and decision-makers to commit to inclusive and
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accessible research to correct the inequities imposed by structural socioeconomic dis-
parities involving wealth, class, and race. We echo these calls.
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